
Towards Comprehensive Web Search

Erik Warren Selberg

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1999

Program Authorized to Offer Degree: Computer Science & Engineering

c© Copyright 1999

Erik Warren Selberg

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Erik Warren Selberg

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Oren Etzioni

Reading Committee:

Steve Tanimoto

Efthimis Efthimiadis

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doc-

torial degree at the University of Washington, I agree that the Library shall make its

copies freely available for inspection. I further agree that extensive copying of this

thesis is allowable only for scholary purposes, consistant with “fair use” as prescribed

in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation

may be referred to University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann

Arbor, MI 48106, to whom the author has granted “the right to reproduce and sell

(a) copies of the manuscript in microform and/or (b) printed copies of the manuscript

made from microform.”

Signature

Date

University of Washington

Abstract

Towards Comprehensive Web Search

by Erik Warren Selberg

Chair of Supervisory Committee

Associate Professor Oren Etzioni
Department of Computer Science & Engineering

The World Wide Web has rapidly become a key medium for information dissemi-

nation to all members of society. However, its disorganized nature and sheer size can

make it difficult for people to find information. Web search services have made a sig-

nificant contribution towards enabling people to quickly find information on the Web.

Unfortunately, as of this writing, no Web search service can conduct a comprehensive

search of the Web for any topic.

In addition, many major Web search services are unable to return a stable set of

results. An intuitive assumption about the behavior of any search service is that the

results of a given query will be unchanged unless either the documents referred to

in the results change and become irrelevant or better documents become available.

Unfortunately, due to a variety of real-world constraints and design choices, many

search services are unstable, intermittently omitting relevant documents from search

results even though the documents are contained within their indices.

One technique that could enable both a more comprehensive search of the Web as

well as a more stable search is meta-search. Meta-search is conducting a single search

using multiple search resources. This thesis examines the application of meta-search

to the World Wide Web. It answers the following questions: can meta-search provide a

more comprehensive search than traditional Web searching? Is meta-searching neces-

sary now, and will it be necessary in the future? Can meta-searching be implemented

in a practical manner? And can meta-search enable a more stable search?

We present MetaCrawler, a meta-search service, as a means of obtaining a more

comprehensive search than existing Web search services. MetaCrawler addresses some

of the issues with Web search service through forwarding a user query and combining

the results from multiple search services into a single list.

To summarize the results of this thesis, we conclude that MetaCrawler demon-

strates that meta-search can be implemented in a manner such that average Web

users will take advantage of the benefits of meta-search. We also conclude that Meta-

Crawler demonstrates that meta-search can be provided and maintained with limited

resources. Through our experiments using Inference of User Value through Real-world

data, a new methodology to evaluate search services, we conclude that MetaCrawler

provides a significantly more comprehensive search than any single search service.

Furthermore, the growth trends of the Web and search service indices lead us to con-

clude that meta-search will be necessary to provide a comprehensive search in the

future. Our experiments also demonstrate that most major search services are unsta-

ble, and may omit relevant documents even if those documents are present in their

indices. Finally, we conclude that search results can not only be made stable, but can

be improved through Collaborative Index Enhancement, a novel model for enhancing

a searchable index based on the experience of previous users.

TABLE OF CONTENTS

List of Figures vi

List of Tables viii

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

1.2.1 Practical implementation . 4

1.2.2 More comprehensive Web search through meta-search 4

1.2.3 Continued likelihood of meta-search benefits 5

1.2.4 Stable search . 6

1.3 Scientific contributions . 7

1.4 Organization . 8

1.5 Conventions used in this thesis . 12

1.5.1 Typographic convention for functions and libraries 12

1.5.2 Search engines vs. search services 12

Chapter 2: Contemporary Web Search Techniques 13

2.1 The Web Search Problem . 14

2.2 Web browsing agents . 14

2.3 Traditional Information Retrieval search engines 18

2.3.1 HTML . 18

2.3.2 Indexing . 19

i

2.3.3 Retrieval . 19

2.4 The Web Discovery Problem . 22

2.4.1 Collective user histories . 22

2.4.2 Distributed search . 24

2.4.3 Spiders . 25

2.5 The Coherence Problem . 27

2.6 Real-world constraints and Web search engines 28

2.7 Summary . 31

Chapter 3: MetaCrawler Architecture 32

3.1 MetaCrawler overview . 33

3.1.1 Understanding query and output formats 35

3.1.2 Collation and duplicate detection 36

3.1.3 Highest common denominator of services 37

3.1.4 Highest quality results and fastest information location time . 38

3.2 Design goals . 38

3.3 Architectural layout . 39

3.3.1 Client Layer . 41

3.3.2 Server Layer . 42

3.3.3 I/O Layer . 44

3.4 Integrating user-defined search resources 44

3.4.1 Wrapper libraries and templates 45

3.4.2 Dynamic Service Protocol . 46

3.5 Architecture evaluation . 49

3.5.1 Expandable . 49

3.5.2 Low maintenance cost . 50

3.5.3 Fast response time . 51

ii

3.5.4 Scalability . 51

3.5.5 Portability . 52

3.6 Summary . 53

Chapter 4: MetaCrawler Implementation 54

4.1 MetaCrawler user interface . 55

4.1.1 Search form . 55

4.1.2 Feedback with server-push and Java 57

4.1.3 Result page with click logging 60

4.2 Data fusion algorithm . 61

4.2.1 Biased interleave methods . 62

4.2.2 Normalize-Distribute-Sum algorithm 63

4.3 Heuristics for duplicate detection . 64

4.3.1 Default duplicate detection . 65

4.3.2 Redirect Heuristic . 66

4.3.3 Mirror Heuristic . 67

4.4 Parallel I/O . 69

4.4.1 Naive process or thread-based approaches 70

4.4.2 Event-based paradigm . 71

4.4.3 Event-based paradigm with DNS 75

4.4.4 Handling other protocols . 76

4.4.5 Evaluation of event-based paradigm 76

4.4.6 Results of event-based model 83

4.5 Further extensions to MetaCrawler 83

4.5.1 Ahoy! The HomePage Finder 83

4.5.2 HuskySearch . 86

4.6 Summary . 89

iii

Chapter 5: Empirical Evaluation 90

5.1 Comprehensiveness of Web search services 91

5.1.1 Inference of User Value through Real-world Data 93

5.1.2 The 1995 search service evaluation 95

5.1.3 The 1999 search service evaluation 100

5.1.4 Independent confirmation . 103

5.2 Longevity of meta-search . 110

5.2.1 Calculating the size of the Web 111

5.2.2 Search service and Web growth trends 113

5.3 Instability of Web search service . 116

5.3.1 Repeated query study . 116

5.3.2 Experimental results . 118

5.3.3 Analysis . 124

5.3.4 Observations about individual services 126

5.3.5 Impact of unstable results . 126

5.4 Summary . 127

Chapter 6: Collaborative Index Enhancement 129

6.1 Using collaboration to improve retrieval performance 130

6.1.1 Information retrieval through direct collaboration 130

6.1.2 Information retrieval through indirect collaboration 131

6.1.3 A general model of indirect collaboration 132

6.2 Collaborative Index Enhancement design 133

6.2.1 Additional information and improved ranking 135

6.2.2 Convenient query expansion 136

6.2.3 Scaling CIE . 140

6.2.4 Hardware and software . 141

iv

6.3 Experimental validation . 141

6.3.1 User study . 142

6.3.2 Log analysis . 151

6.4 Summary . 161

Chapter 7: Conclusions and Future Work 164

7.1 Summary . 164

7.1.1 Practical implementation of meta-search 165

7.1.2 Significant contribution of meta-search 166

7.1.3 Longevity of meta-search . 166

7.1.4 Stable search . 167

7.2 Future work . 168

7.2.1 Qualitative analysis . 168

7.2.2 Improving inference of user value 169

7.2.3 Query routing . 169

7.2.4 Alternative instances of CIE 170

7.2.5 Beyond HTML . 171

7.2.6 Information integration . 172

7.2.7 Outside the box . 173

Bibliography 175

Appendix A: Queries from Lawrence and Giles study 189

Appendix B: CIE User Survey Form 191

v

LIST OF FIGURES

2.1 Formal description of the Web Search Problem. 15

2.2 A sample HTML document. 20

2.3 Creating an inverted index. 21

2.4 Formal description of the Web Discovery Problem. 23

2.5 A simple spider algorithm. 26

2.6 Sizes of search services’ indices (in millions of pages). 30

3.1 MetaCrawler control flow. 34

3.2 MetaCrawler architecture. 40

3.3 Clio and MetaCrawler integration. 48

4.1 MetaCrawler v1.0 Homepage screenshot, Jan. 1996. 58

4.2 MetaCrawler v1.5 Homepage screenshot, Aug. 1996. 59

4.3 The components of a URL. 65

4.4 FSM for a general HTTP connection. 72

4.5 FSM network for general HTTP connections. 74

4.6 FSM for HTTP with DNS. 77

4.7 Overhead of threads and processes for busywait benchmark. 80

4.8 Overhead of threads and processes for file I/O benchmark. 81

4.9 HuskySearch Homepage screenshot, Aug. 1999. 88

5.1 An example of search service overlap. 92

5.2 Unique Document Percentage, 1995. 97

vi

5.3 Viewed Document Share, 1995. 99

5.4 Unique Document Percentage, 1995 and 1999. 101

5.5 Viewed Document Share, 1995 and 1999. 102

5.6 Cumulative Document Percentage. 104

5.7 Cumulative Viewed Percentage. 105

5.8 Percentage of viewed documents returned by one, two, and three or

more services. 106

5.9 Number of Web servers on the Internet. 114

5.10 Trends of the size of search service indices. 115

5.11 Top 200 and Top 10 results using default options. 119

5.12 Average change over time for Top 10 URLs. 121

5.13 Percentage of URLs removed temporarily. 123

6.1 CIE architecture. 134

6.2 Sample HuskySearch results from the query “Utah Jazz.” 138

6.3 Accuracy of result judgment. 147

6.4 Time to answer each question (Hours:Min). 148

6.5 View Rate of each CIE auxiliary. 153

6.6 View Rate for ClickedURLs and 3 representative Web search services. 156

6.7 Cumulative Overlap Percentage through 7.2 million documents. . . . 162

vii

LIST OF TABLES

4.1 Redirect Heuristic example 1. 68

4.2 Redirect Heuristic example 2. 68

4.3 Mirror Heuristic example 1. 69

4.4 Default, adjusted, and actual maximum number of processes, threads,

and open connections. 82

4.5 Top ranked and found percentages for Ahoy! evaluation. 85

5.1 Coverage of search services. 108

5.2 Unique Document Percentages for Bharat and Broder. 109

5.3 Change over one month for Default, Phrase, and AllPlus options, av-

eraged across all services for Top 10 and Top 200. 120

5.4 Histogram of viewed document ranks. 124

6.1 Percentage of users accurately answering each question. 144

6.2 Uniqueness of queries. 145

6.3 Percentage of users making secondary and tertiary queries. 150

6.4 Additional viewed documents contributed by ClickedURLs and three

representative services. 158

6.5 Average Rank, Median Rank, and standard deviation for viewed doc-

uments. 160

viii

ACKNOWLEDGMENTS

This thesis would not be possible were it not for the love and support of a great

many people. First and foremost, I would like to acknowledge Mary Kaye Rodgers,

who has not only made the past five years the best five years of my life, but has

helped me make the best of these past few years.

I would not be where I am today without the sage advice of my advisor, Oren

Etzioni. Oren taught me how to be a good researcher and ask the right questions

when investigating a problem. Many thanks also go to the members of my reading

committee, Efthimis Efthimiadis and Steve Tanimoto, who helped make this thesis a

reality. I would also like to thank Raya Fidel, who gave me many valuable insights

into the world of Information Retrieval, and Steve Hanks, who made me type “mkdir

thesis.” The user evaluation of CIE would not be possible without the efforts of

Sam Oh and Allyson Carlyle, both of whom donated their classes. I would also

like to thank my many colleagues who proofread this thesis under rather harsh time

constraints: Lauren Bricker, Rich Segal, Marc Friedman, Greg Barnes, and Elizabeth

Walkup. Also, thanks to Ed Lazowska for providing me with lots of insight into how

things are done.

Thanks go out to the people who made MetaCrawler and HuskySearch operational

for the past five years. The support people in our department, Erik Lundberg, Nancy

Johnson Burr, Warren Jessop, and Voradesh Yenbut, as well as the many folks in

Computers & Communications, especially Terry Gray, Melody Winkle, Steve Corbato,

Art Dong, Ali Marashi, Rick White, and Tom Profit all helped tremendously in

keeping MetaCrawler and HuskySearch running smoothly, allowing me to work on

ix

my research. Thanks also to the other graduate students and undergrads who worked

on MetaCrawler and HuskySearch: Oren Zamir, Melissa Johnson, Zhenya Sigal, Greg

Lauckhart, Christin Boyd, Darren Schack, and Tim Bradley.

This thesis would not have been completed without the support of so many friends

who made my time at the University of Washington so exciting and memorable.

Thanks to Ruben Ortega and Lauren Bricker, Rich and Joanna Segal, Sean Sandys,

Denise Pinnel, Andy and Debbie Berman, Lara Lewis, Dave “Pardo” Keppel, Shuichi

Koga, Keith Golden and Ellen Spertus, Dawn Werner, Steve Wolfman, Rachel Pot-

tinger, and Zach Ives. I’d also like to thank the members of the Spuds Softball Team

and Disc Drives Ultimate Team for many enjoyable games, and the members of Fifth

Element, especially those who stuck with me through the great unpleasantness: Lst,

DarkTroll, Joust, Fallon, Jooky, HugeGuy, Monk, and Phatty, for helping me blow

off a great deal of steam these past two years.

Finally, I would like to thank my family for all their support these many years. I

would especially like to thank my great-aunt and uncle Junie and John Marcinkevich

for their love and support while I’ve been in Seattle, my mother Joy, my father Ryan,

and brother Scott everything they have done for me.

x

DEDICATION

In memory of John Peter Selberg.

xi

1

Chapter 1

INTRODUCTION

1.1 Motivation

While the World Wide Web began as a convenient method for scientists to disseminate

information to one another, the Web has rapidly become a key medium for information

dissemination for everyone. Indeed, the Web has been likened to a “digital library,”

and to a searchable 15-billion word encyclopedia [6]. As pointed out by Lawrence

and Giles, “Web search engines have made the large and growing body of scientific

literature and other information resources accessible within seconds” [66]. However,

the Web is unstructured, with no consistent organization. A common analogy is that

the Web is like the world’s largest library, but without a catalog. Therein lies the

heart of the Web Search Problem: How can a user find all relevant information about

a topic that exists on the Web?

Currently, Web search services such as Excite [37] or Yahoo! [40] are used to locate

information on the Web. In the 10th Web Survey done by the Georgia Institute

of Technology’s Graphics, Visualization, and Usability Center, 84.8% out of 16,891

respondents used search services to find Web pages [56]. Considering that in December

1998, Excite reported an average of 58 million page-views per day with 20 million

registered users [38], and Yahoo! reported 167 million page-views per day and 35

million registered users [111], it is clear that these services have a substantial impact

on millions of people daily.

A desired feature of these general search services, often assumed to exist by naive

2

users, is that these search services are able to locate any piece of information available

on the Web. However, numerous studies have shown that no single search service has

indexed the entire Web [92, 66, 12]. In fact, the largest percentage of the Web any

search service has been estimated to index is approximately 50% [12]. Therefore,

currently no single service can knowingly provide all the information on the Web

germane to a particular query. However, if no single Web search service can provide

all of the germane information, perhaps multiple Web search services can.

Another desired feature of these search services, assumed by both naive and ex-

perienced users alike, is that the results returned by these search services are stable.

Stable in this context means that the results returned by submitting a given query

do not change unless either the documents referred to in the results change or more

appropriate documents become available. We show in Section 5.3 that most of the

major Web search services are unstable, which directly impacts the quality of the

results obtained by a user.

This thesis explores the use of meta-search to provide both a more comprehensive

Web search than any single Web search service as well as a more stable search. Meta-

search, sometimes called federated search, is defined as conducting a single search

using multiple heterogeneous search resources and combining the results. Our claim is

that meta-search provides both a significantly more comprehensive Web search than

existing Web search services and can enable a stable search even if the underlying

search services are unstable.

1.2 Overview

We address four key questions regarding comprehensive search of the Web in this

thesis. First we examine whether meta-search can be implemented in a practical

manner for users. Second, we examine if meta-search contributes significantly to

comprehensive Web search. Then we examine whether it is likely that meta-search

3

will continue to provide improved comprehensiveness relative to single Web search

services, and finally if meta-search can provide a stable search even if the underlying

search services are unstable.

Our approach is to design and build a prototype Web meta-search engine and

deploy it on the Web. Implementing a publicly available meta-search engine allows

us to demonstrate that meta-search is practical. We then evaluate the four questions

using the prototype by performing various experiments and user studies.

We designed two prototype meta-search systems. The original is called Meta-

Crawler [44], and was operational as a public meta-search service at the University

of Washington from June 1995 through November 1996. In November 1996, Meta-

Crawler was licensed to Go2Net, Inc., which took over daily operation. In January

1997, we deployed HuskySearch [93], a more advanced research meta-engine derived

from the original MetaCrawler code base. As part of the HuskySearch system, we

developed Collaborative Index Enhancement, a general model for improving search

results through user interaction.

The HuskySearch service remains in operation by the author as of the writing of

this thesis. This thesis only describes work done on MetaCrawler while MetaCrawler

was in operation by the author at the University of Washington. Work done on the

commercial version of MetaCrawler will not be discussed.

MetaCrawler was designed to determine if meta-search could be done in a practical

manner, and to evaluate how much more comprehensive meta-search is than a single

search service. Collaborative Index Enhancement is a general model that was designed

to enable HuskySearch to provide a stable search, as well as improve the quality of

search results over time. Ensuring that MetaCrawler and HuskySearch were able

to address the questions introduced many challenges in their design. The following

sections detail these challenges.

4

1.2.1 Practical implementation

Comprehensive meta-search provides little value unless it can be used by people who

desire it. Therefore, our first goal was to design and implement a meta-search system

that anyone on the Web could and would use. Users interact with most contemporary

Web search services by entering a query and receiving results in under a few seconds.

Users have become accustomed to receiving results quickly. Therefore, in order to

attract and retain users, a meta-engine must also return results quickly. Users are

also attuned to the quality of results. Most search services return results in a ranked

relevancy list, where documents are ranked according to the service’s confidence of

their relevance. If results from heterogeneous services are to be collated into a single

ranked relevancy list, users will expect there to be no duplicate documents, and that

the ranking does make sense to them.

Meta-search services must make several external Web queries. These queries con-

sume a non-trivial number of resources. As more and more users interact with the

service, more and more queries are issued. Resources are limited, therefore we have

optimized MetaCrawler and HuskySearch to use as few resources as possible.

An actively used meta-search service allows for a great deal of empirical testing. In

addition to determining if any particular search service can provide a comprehensive

search, a number of related hypotheses can be evaluated. In particular, we are able

to determine if the utilized search services each return results not returned by others,

and we can determine if the results returned by those search services are useful to

users.

1.2.2 More comprehensive Web search through meta-search

If meta-search can be practically implemented, the next question is whether it adds

any significant value to the user. Our hypothesis is that meta-search provides a

significantly more comprehensive search than any single search service. First, we

5

must establish whether the various search services are providing some information

that other search services are not. There is little to be gained by using a search

service whose information is subsumed by others. To determine if the search services

we use are all providing results that other search services do not provide, we analyze

the documents returned by the Web search services from user queries as well as the

documents viewed by the user. We show that each Web search services returns a

largely unique set of documents, and each Web search service returns documents that

the user views.

After we show that each search service is providing some inherent contribution,

we then address how much benefit meta-searching provides over any subset of those

services. We use the documents returned by each search service as an upper bound

of the performance of any single search service. We then show the percentage of

documents made available through the results of only one service, then through the

combined results of two, then three, and so on. These percentages show that each

search service contributes a significant number of available documents. In a similar

fashion, we also show that each search service contributes a significant number of

viewed documents.

1.2.3 Continued likelihood of meta-search benefits

It might be argued that traditional Web search services will eventually index the

entire Web, and thus the contributions of meta-searching toward comprehensive Web

search, however impressive today, will soon be obviated. We cannot predict what

leaps in technology and surprising discoveries may come, and thus this conjecture

may be true. Meanwhile, we can extrapolate when a Web search service will index

the entire Web, or if a leap in technology will be required.

Four quantities are necessary to determine if and when a single search service will

be able to provide comprehensive Web search: the size of the Web, how fast the Web

is growing, the size of the search service’s index, and how fast the index is growing.

6

Growth in this context is an amalgam of new Web pages being created, existing Web

pages being removed, and existing Web pages being changed. Estimates on the size of

the Web can be made based on determining how many documents two search service

indices have in common. The rate of Web growth can be extrapolated from multiple

Web size estimates. Another estimate of Web growth is just the growth rate of Web

servers. Historical data on the sizes of Web search service indices are readily available,

and future trends can be extrapolated from those sizes.

We present the data on the size of Web search service indices and predict their

growth over nine months. We then present two estimates of the size of the Web. We

present two estimates on the growth of the Web, one based on the size estimates, and

the other based on the growth rate of Web servers. From these trends, we show that

no search service will index the entire Web. Thus, meta-searching will continue to

provide substantial benefit towards comprehensive search.

1.2.4 Stable search

There is no guarantee that meta-search provides a complete solution to obtaining

comprehensive Web search. Meta-search is largely dependent on the quality of the

results from the underlying search services. One of the difficulties with using large

public Web services is that they undergo constant internal change. Some changes,

such as modifications to their output format, are readily apparent. Other changes,

such as the contents of their index or their ranking algorithm, are more subtle.

An intuitive assumption about the behavior of a search service is that the results

of a given query will be stable. A result that is relevant should not be ranked lower

unless it is no longer relevant or a better result becomes available. We challenge this

assumption, and show that it does not hold for a majority of the major contemporary

search services. Furthermore, we show that through Collaborative Index Enhance-

ment, a general method for improving search results by collecting information about

user sessions, we are not only able to ensure a consistent set of results, but improve

7

the quality of the results overall.

1.3 Scientific contributions

We now summarize the main scientific contributions presented in this thesis:

The MetaCrawler architecture

A fundamental question regarding meta-search is how to build a meta-search

engine. We present the MetaCrawler architecture, an architecture for a scalable

Web meta-search engine.

Inference of User Value through Real-world Data

Evaluation of the Web is difficult due to the lack of standard test data sets.

This thesis introduces Inference of User Value through Real-world Data, a new

method to evaluate Web search services based on observing of a large number

of user sessions. We take advantage of the large number of users and user

queries and our ability to query multiple services in order to provide meaningful

evaluation of Web search services.

A better understanding of the behavior of Web search services

Using our methodology and meta-search engine, we present a number of empir-

ical evaluations of contemporary Web search services. Through these evalua-

tions, we are able to make some generalizations about their characteristics and

behavior.

A scalable model for fast parallel Web page retrieval

Contemporary parallel Web page retrieval methods use either a multiple process

or multiple thread model, which are inherently limited to about a thousand si-

multaneous page retrievals. This thesis describes a model that enables retrieving

over four thousand Web pages simultaneously using a single process.

8

The Normalize-Distribute-Sum algorithm

We present Normalize-Distribute-Sum, a novel algorithm that collates results

from ranked relevancy lists that use different ranking methods. This algorithm

takes advantage of available ranking information in the results.

Collaborative Index Enhancement

This thesis presents Collaborative Index Enhancement, a novel model for cap-

turing and incorporating information about existing Web pages through the

observation of user accesses. We use this method to explore four different in-

stantiations of the Collaborative Index Enhancement model.

1.4 Organization

The remainder of this thesis is organized as follows:

Chapter 2: Contemporary Web Search Techniques

The Web Search Problem is formally defined in Chapter 2. We then discuss vari-

ous automatic browsing techniques that can provide relevant information, but do not

guarantee to provide that information in a timely manner. We also describe how tra-

ditional Information Retrieval engines can address the Web Search Problem. There

are two difficulties with using traditional engines. The first is the Web Discovery

Problem: How can all Web pages be located? The second is the Coherence Prob-

lem: How can the index be kept up to date with the Web? We highlight the major

techniques for addressing the Web Discovery Problem: collective user histories, dis-

tributed search, and spiders. Using spiders, a traditional Information Retrieval engine

can provide a comprehensive search. The Coherence Problem can also be addressed

through polling documents and reindexing when necessary.

Unfortunately, there are numerous real-world constraints that limit the ability of

a spider-based search service to provide a fully comprehensive search. We describe

9

how the cost of providing and maintaining a comprehensive index can be prohibitive.

We show the size of the largest search service indices, which demonstrates that there

is potential improvement in combining them through meta-search.

Chapter 3: MetaCrawler Architecture

Chapter 3 presents MetaCrawler, a meta-search engine, as a means of obtaining a

more comprehensive search than existing Web search services. MetaCrawler addresses

some of the issues with spider-based search service through forwarding a user query

and combining the results from multiple search services into a single list. We detail

MetaCrawler’s architecture, which is designed to promote expandability, low mainte-

nance, performance, scalability, and portability, and we describe how the architecture

are able to accommodate those goals.

Chapter 4: MetaCrawler Implementation

Even though it appears to be straightforward to create a meta-search engine, imple-

menting one that is fast, efficient, and scalable is not trivial. Chapter 4 goes into

further technical depth of MetaCrawler. We show that average Web users can take

advantage of comprehensive search through a clean Web interface. A problem with

combining results from different search services is that the results may be biased

in some fashion. We present the Normalize-Distribute-Sum algorithm that collates

results from heterogeneous search services that takes into account the potential bi-

ases of various services. Another problem with combining the results from different

services is that the same URL may be described in different ways. We present the

Redirect Heuristic and Mirror Heuristic that classify common cases of duplication

from redirects and mirroring.

Parallel retrieval of Web pages consumes a significant amount of system resources.

We show how using an event-based paradigm enables an application to download

over four thousand pages at once, compared to the common alternative of threads

10

which allows for slightly over a thousand simultaneous retrievals on workstation-

class computers. Finally, we present two applications that build on MetaCrawler:

Ahoy! and HuskySearch, which implement various features requested by users such

as known item searching, persistent options, and query logic for locating people.

Chapter 5: Empirical Evaluation

In Chapter 5, we demonstrate the value of meta-search through a number of experi-

ments. Using Inference of User Value through Real-world Data, a new methodology

that enables us to measure the performance of a search service, we show that no

single search service was comprehensive in 1995 and in 1999. While the available

search services have changed, the advantages gained through meta-search are just as

valuable in 1999 as they were in 1995.

Using various estimates of the sizes of the Web and search services, we extrapolate

the rate of growth of the Web as well as the rate of growth of three largest search

services available. We predict that not only will Web search services be unable to

fully index the Web by the end of 2000, but that even if the indices of the three

largest search services were completely disjoint, combining them will not be enough

to provide a comprehensive Web search.

Finally, through direct observation we demonstrate that not only do search services

provide an incomplete search of the Web, but that the results are often unstable. We

show that a third of the documents returned in the Top 10 results by five of the

nine major search services are removed from the search results over the course of one

month, only to be returned to the results of subsequent queries.

Chapter 6: Collaborative Index Enhancement

In Chapter 6 we present Collaborative Index Enhancement, or CIE, a model for

enhancing a searchable index based on the experience of previous users. The key

idea behind CIE is to take the results document from a query and feed it back into

11

the source index or indices in some manner. We demonstrate a prototype system

based on the HuskySearch search service that implements CIE using auxiliary search

indices. This implementation allows us to use and experiment with several different

CIE methods at once, without the need to modify or even control the original Web

indices we use.

We present a series of experiments using both a user study as well as our Inference

of User Value through Real-world Data methodology. Our results show that CIE

contributes approximately 2% of the documents viewed by users. While a modest

figure, we demonstrate that on a large scale system, after a short period of time over

50% of the documents viewed had been viewed in a previous session. This shows

that there is potential for some CIE system to be of benefit in a large scale system.

Our results suggest that CIE is a useful addition to HuskySearch, and promises to

provide additional benefit over a long duration. To our knowledge, this is the first

experimental evaluation of any Collaborative Index Enhancement method applied to

the Web.

Chapter 7: Conclusions and Future Work

Finally, Chapter 7 summarizes the results presented and gives directions for future

work. We conclude that MetaCrawler demonstrates that meta-search can be imple-

mented in a manner such that average Web users will take advantage of the benefits

of meta-search. We also conclude that MetaCrawler demonstrates that meta-search

can be provided and maintained with limited resources. Through our experiments

in Chapter 5, we conclude that MetaCrawler provides a significantly more compre-

hensive search than any single search service. Furthermore, the growth trends of the

Web and search service indices lead us to conclude that meta-search will be necessary

to provide a comprehensive search in the future. Our experiments also demonstrate

that most major search services are unstable, and may omit relevant documents even

if those documents are present in their indices. Finally, we conclude that search re-

12

sults can not only be made stable, but can be improved through Collaborative Index

Enhancement.

1.5 Conventions used in this thesis

1.5.1 Typographic convention for functions and libraries

The algorithms and techniques presented in this thesis are not dependent on a given

operating system or programming language. However, the prototype was implemented

under a POSIX-compliant UNIX operating system using C++ and Perl. Occasion-

ally, we will reference key libraries and system calls that affect the implementation.

These libraries and functions will be presented in monospace type with the appropri-

ate UNIX manual section appended in parenthesis, such as the gethostbyname(3N)

system call or the lib:LWP(3) Perl library.

1.5.2 Search engines vs. search services

Contemporary literature often uses the term “search engine” to refer to different

aspects of a Web site that provides access to a searchable index. Common usage of

“search engine” is to refer to general popular Web sites with large, general purpose

indices, such as AltaVista [30] or Excite [37]. In Information Retrieval literature,

“search engine” typically refers to the part of a system that accepts a query and

performs the search over an index. For the sake of clarity, we will use the term “Web

search service” or just “service” to refer to the entire Web site. We will use the term

“search engine” or “engine” to refer to the program that accepts a query and performs

the lookup over a searchable index.

13

Chapter 2

CONTEMPORARY WEB SEARCH TECHNIQUES

The Web Search Problem is the problem of finding all information on the Web

relevant to a given query. This chapter highlights work done to address the Web

Search Problem. This chapter is organized as follows:

• We begin this chapter with a formal definition of the Web Search Problem.

• A common approach to addressing the Web Search Problem is through the use

of agents. We highlight a selection of the key agent work in Section 2.2.

• Another common approach to addressing the Web Search Problem is through

traditional Information Retrieval search engines. We highlight how traditional

Information Retrieval engines are used to address the Web Search Problem in

Section 2.3.

• The major drawback to using these engines is the Web Discovery Problem: How

can all Web pages be located? We describe three major techniques to address

the Web Discovery Problem in Section 2.4.

• Another problem with retrieval engines is the Coherence Problem: How can the

contents of a searchable index be kept up to date with the Web? We present

two commonly used techniques for addressing this problem in Section 2.5.

• Finally, we present some real-world constraints on Web search services in Sec-

tion 2.6. These constraints limit how comprehensive Web search services can

14

be. This thesis addresses how to provide a more comprehensive search within

those constraints.

2.1 The Web Search Problem

The Web Search Problem is a instance of the Information Retrieval Problem. The

Information Retrieval Problem is defined as: given a set of documents and a query,

determine the subset of documents relevant to the query. The Web Search Problem,

outlined in Figure 2.1, is the problem of finding the set of documents on the Web

relevant to a given user query. This problem accepts as input a set of Web documents

and a query. Note that this set is not necessarily the entire Web. The output is a

subset of all Web documents such that every document is relevant to the query. Like

the Information Retrieval Problem, the Web Search Problem is difficult to resolve

because relevance is a notion in each user’s mind which may change during the course

of a search, and thus must be approximated. The Web Search Problem is further

compounded because there is no direct way to obtain all Web pages. Therefore, only

a subset of available Web documents are given as input. Thus, relevant documents

must somehow be located from given set of Web documents.

2.2 Web browsing agents

There are a wide variety of methods and techniques to address the Web Search Prob-

lem. The most straightforward is simple manual browsing. However, due to both the

unstructured organization of the Web and its sheer size, manual browsing is often

ineffective. Automatic browsing, on the other hand, might be an effective solution.

A substantial quantity of work has been done exploring the creating of Web browsing

agents, or programs that browse for a user and attempt to find relevant information.

These agents treat the Web as a graph, with documents representing nodes and hy-

perlinks representing edges. We now highlight three representative techniques that

15

Let:

W be the set of all Web documents.

r(Q, x) be a Boolean relevance predicate defined by the user.

Given:

A set of Web documents S ⊆ W.

A query Q.

Determine:

The set of relevant documents R defined by

{x ∈ W : r(Q, x) = >}

Figure 2.1: Formal description of the Web Search Problem.

16

use agents to find information through some kind of graph traversal.

De Bra and Post’s fish-search explored automatic Web browsing by enhancing the

Mosaic Web browser to automatically browse starting from the current search page

to a certain depth [28]. When a user requested a search, fish-search would conduct

an exhaustive depth-first search from the current page. The search could be limited

to either a fixed period of time or until a certain number of relevant pages have been

found. Although they provided a number of heuristics to optimize the search [27],

Web server operators noted that fish-search was not far removed from exhaustive

search. If all users were to employ a fish-search for every search, the overall demands

would impose a substantial burden on Web servers.

A similar agent to fish-search is Letizia [67]. Letizia is a user interface agent

that observes user behavior and attempts to locate useful items. Letizia doesn’t use

any heuristics to guide its search, but rather employs resource constraints, such as

exploring only so many pages per minute, to restrict its search. Even though Letizia

adheres to more resource constraints than fish-search, it has the potential of using

more resources than fish-search. In a similar manner to fish-search, Letizia conducts a

depth-first search through pages that the user is currently browsing. However, rather

than searching on demand, Letizia constantly conducts and refines its search, and only

returns results to the user on demand. Thus, Letizia consumes as many resources as

possible as long as the user is browsing.

Another approach is Lamacchia’s Internet Fish Construction Kit [62]. Users con-

struct Internet Fish, or IFish, using the tools available from the kit. IFish are semi-

autonomous agents that automatically browse the Web searching for relevant infor-

mation. Unlike fish-search, which attempted to locate all available information at

once, IFish use a casual model where relevant information is given to the user when

it is found. There is no inherent time limit on how quickly the information should be

retrieved, nor on how long any search can take. While a single IFish does not impose

as large a load on Web servers as the fish-search model, users could and were encour-

17

aged to make multiple IFish for their various information needs. Thus if IFish were

to catch on, all users would have multiple IFish running at the same time, causing a

huge load on network resources.

The main advantage to using Web agents is how they handle relevancy. While

users may not be able to perfectly communicate what it means for a document to

be relevant to a given query, agents typically provide a very expressive language for

users to define what they mean by relevant. For example, on a given query, one user

may find a particular document relevant, and another may find it irrelevant. If both

users used their own agents, they could each define their relevancy criteria for their

own agent, and thus only the user who found the document relevant would see it.

The main drawback to using Web agents is that they consume a large amount

of resources. A few well-designed agents do not pose a large problem for the Web.

However, in large numbers even well-designed agents can overload a server. Even if

overloading a server with requests was not a problem, the entire family of automatic

browsing agents also suffer from one of two problems relating to the scale of the Web.

The first problem relates to automatic browsing agents that require a promising path

of Web pages to information that may be relevant. If there is no path available to

that information, then the agent will not be able to discover that information. The

second problem relates to agents that do not require a promising path. These agents

typically use some kind of graph traversal algorithm, such as a depth-first or breadth-

first traversal. Graph traversal algorithms may be a reasonable method to search

through a few million pages. However, with a Web that consists of several hundred

million pages, it is entirely possible, and likely, that the agent wanders in a sea of

useless information for quite some time before finding any relevant information.

18

2.3 Traditional Information Retrieval search engines

An alternative approach to solving the Web Search Problem using Web browsing

agents is to use traditional Information Retrieval search engines. These search engines

locate information in a corpus, or set of documents, through a two step process. The

first step is indexing, which converts the corpus into some kind of index that maps

words to documents. The second step is retrieval, where a user query is used to lookup

documents. The program that conducts the indexing is the indexer, and the program

that facilitates the retrieval via the index is the search engine. Search engines can

be used to locate information on the Web by using a set of Web documents as the

corpus. They can then be indexed and searched like any other corpus of documents.

To illustrate the indexing and retrieval process, we overview in the following sec-

tions how Web documents are indexed using a simple inverted index, and how those

documents are then retrieved. Indexing and retrieval are two of the fundamental re-

search areas in the field of Information Retrieval, and thus readers who desire more

information should consult some of the authoritative texts on the subject, such as the

texts by Salton and McGill or van Rijsbergen [88, 108].

2.3.1 HTML

The Web is comprised of text files written in HyperText Markup Language, or HTML.

A HTML file is simply a text file embedded with markup tags that describe various

parts of the document. Markup tags are text delimited by < and >. Most markup

tags appear in pairs around a region of text, with the opening tag being of the form

<word args > and the closing tag being simply </word >, although some markup tags

do not require a closing tag. One particular tag is the anchor tag, which allows an

author to create a hyperlink to another document on the Web. A hyperlink combines

a Uniform Resource Locator, or URL, with a piece of text that can be clicked on, or

selected, by a user. If the user clicks on the text, the user’s Web browser loads the

19

URL contained within the hyperlink. Figure 2.2 shows a sample HTML document.

The HTML standard specifies that each document has a Title. The title is found

between the <title> and </title> tags. The title of the document in Figure 2.2 is

“A Sample Document.” An option for HTML pages are META tags. Two pertinent

META tags are the keywords tag and the description tag. The keywords meta tag

contains a comma-separated list of key words and phrases for the document, and the

description tag contains a short description of the page. These two tags are designed

to aid the indexing of a page.

2.3.2 Indexing

HTML documents must be cleaned before they can be indexed. Cleaning refers to the

removal of the document header and markup tags in the body of the text. In some

cases, data contained within markup tags, such as the title, keywords, and description

found in the head of the document, are kept and used as part of the indexing.

An inverted index is created from a document corpus by creating a mapping be-

tween each term in the document corpus to the documents that contain that word.

For clarity, we will liken a term to a word, although a term can refer to other concepts

such as a word stem, bigram, or synonym list. Figure 2.3 illustrates this technique.

Common adaptations of this technique include term weighting and positional infor-

mation with each document entry. Each entry in the inverted index is called a key.

2.3.3 Retrieval

The search engine accepts a query comprised of one or more keywords. The engine

simply looks up which documents contain the keywords via the inverted index, and

obtains a set of documents for each of the keywords. The sets of documents are then

merged. The process of merging the lists for each word depends on the query seman-

tics of each individual engine. For example, a Boolean engine requires the query be

formulated using Boolean logic between keywords. Merging is then straightforward as

20

<html>

<head>

<title>A Sample Document</title>

<meta name="keywords" content="sample document, html">

<meta name="description" content="Just a sample document">

</head>

<body>

<h1>This is a large header</h1>

This is the text of a sample HTML document.

This is a hyperlink to CNN

</body>

</html>

Figure 2.2: A sample HTML document.

A sample HTML document. The indentation is only for clarity.

21

Doc1:

Jazz defeat Portland. . .

Doc2:

Portland steamrolls slumping

Lakers. . .

Doc3:

Jazz coach upset even though

Jazz defeat Sonics. . .

Inverted Index:

coach → {Doc3, 2}

defeat → {Doc1, 2}, {Doc3, 7}

even → {Doc3, 4}

Jazz → {Doc1, 1}, {Doc3, 1}, {Doc3, 6}

Lakers → {Doc2, 4}

Portland → {Doc1, 3}, {Doc2, 1}

slumping → {Doc2, 3}

Sonics → {Doc3, 8}

steamrolls → {Doc2, 2}

though → {Doc3, 5}

upset → {Doc3, 3}

Figure 2.3: Creating an inverted index.

An inverted index is created from Doc1, Doc2, and Doc3. In this ex-

ample, the position of the word is included in the index. This facilitates

searching using positional logic, such as phrases.

22

the documents sets are combined using the appropriate Boolean logic. Another com-

mon method is to simply take the intersection or use a threshold, e.g. all documents

that appear in 66% of the document sets.

2.4 The Web Discovery Problem

The problem with using a traditional Information Retrieval approach for Web search-

ing is that the indexer needs to have access to the documents in order to index them.

However, there is no direct way to obtain all of the available documents on the Web.

The Web Discovery Problem is the problem of obtaining all available documents on

the Web. It takes as input a starting set of Web documents and a method of obtain-

ing documents through hyperlinks, and returns as output the set of all available Web

documents. This is highlighted in Figure 2.4. Assuming all Web documents have

been found, a traditional Information Retrieval approach can then be used to solve

the Web Search Problem. We now turn to work that has attempted to address this

problem.

2.4.1 Collective user histories

One approach to the Web Discovery Problem is to make use of the browsing done by

the user. One method is to collect and gather users’ browsing histories. Lim’s Coollist

system is an early example of this technique [68]. The histories of users are sent to

a Coollist Repository at the end of each browsing session. Lim’s system defines a

session by a fixed amount of idle time. A Coollist Library then merges the histories

from the Coollist Repository into a single index. In addition, other indices can be

created, such as indices that are comprised of users within a certain group.

A technique like this could potentially create a comprehensive index of the Web.

It is reasonable to assume that the author of a Web page will visit it at least once to

ensure that there are no errors in the HTML. Thus, all pages would be part of some

23

Let:

W be the set of all Web documents.

L = {(x, y) ∈ W ×W} be the set of all hyperlinks.

Given:

A set of Web documents S ⊆ W.

A relation l(x) = {y ∈ W : (x, y) ∈ L}

Determine:

W, the set of all documents on the Web

Figure 2.4: Formal description of the Web Discovery Problem.

Note that solving this problem is predicated on the existence of a path

to every element inW from at least one element in S. Thus, a poor choice

of S will make this problem unsolvable.

24

user’s Coollist, and thus would be added to a global index. Unfortunately, there are

two non-technical issues that make this approach impractical. The first problem is

that users loath to divulge their complete browsing history due to privacy concerns.

In some cases, such as users browsing from a corporate site, they may be legally

restricted from divulging their browsing history. The second problem is that this

solution requires users to have some kind of client program that sends the histories

to a repository. Ensuring that all of the users on the Web have such a client is a huge

deployment problem, and unlikely to be solved unless the client program is embedded

in the browser or operating system.

2.4.2 Distributed search

Another way of solving the Web Discovery Problem is to index pages locally rather

than move them to a central repository for indexing. This is known as distributed

search. In a distributed search model, each Web server creates a searchable index

of its local pages. Presumably, each Web server has, or can obtain, a list of files it

provides. The Web server then does one of two things: it either transmits the index

to a central repository to create a global index, or it transmits routing data to a

central repository so that appropriate queries can be forwarded to the local server.

We discuss each of these models in turn.

In the Harvest model, the index is sent to a central repository and merged with

other indices to create a global index [91]. Naturally this assumes all Web servers

are using the same indexer to create their local indices. Users are then able to search

the entire Web through the comprehensive index. An advantage of this model is that

resources required for retrieval can be combined in one central location, rather than

spread out over myriads of Web servers. This makes it easier to operate and maintain

the search service.

In the Query Routing model, only the keys of the index are sent to a repository

[46, 98]. When a user issues a query at the repository, the query is forwarded to indices

25

that may have relevant information, and the results are merged. This spreads the cost

of search resources across all Web servers. There are issues regarding the proper way

to merge documents into a single list [7], but these are not insurmountable.

While distributed search appears to be a straightforward method to obtain a

comprehensive Web index, it is a technology that is difficult to use. Distributed

search requires that Web server operators index their site using a particular indexer.

This puts a substantial burden on the operator. Even if that was not an issue, there

is an assumption that a local indexer is able to create a comprehensive local index.

The common assumption is that a local index can be created by traversing the file

system on local or networked disks. However, files on a local disk do not necessarily

correspond directly to files on the Web, and thus indexing a local disk may index

files that are not available through the Web. Finally, the distributed search model

assumes that the Web server operator is knowledgeable enough about his or her Web

site to properly configure a local indexer. While this may be true of a small site,

operators of large sites may be completely overwhelmed by the number and variety

of pages at their site. Because of these issues, distributed search has not yet become

a viable option for comprehensive Web search.

2.4.3 Spiders

A Web browsing agent is able to locate documents, but the time it may take to locate

all relevant documents is undefined. A search engine is able to retrieve documents

quickly, but it cannot locate documents directly. An obvious solution to the Web

Search Problem is to use a Web browsing agent to gather all available documents, and

then use a traditional indexer and search engine to search through those documents.

Agents that gather documents are known as spiders, sometimes called Web robots

or crawlers [79, 71]. A spider is an agent that traverses hyperlinks in an attempt of

finding all available Web pages. A spider takes as input a starting pool of URLs and

an document index, which is typically some kind of inverted index. Until the pool of

26

Spider(URL pool url pool , Document index index)

while (url pool not empty)

url ← pick URL from url pool

doc ← download url

new urls ← extract urls from doc

insert doc into index

insert url into indexed urls

for each u ∈ new urls

if u /∈ indexed urls

append u to url pool

Figure 2.5: A simple spider algorithm.

URLs is empty, the spider removes a URL from the pool and downloads the document

to which it refers. It then extracts all URLs from the document, inserts those into the

pool, and inserts the document into the index. This is encapsulated by the pseudo-

code depicted in Figure 2.5. This spider algorithm is equivalent to a graph-covering

algorithm where nodes represent documents and edges represent hyperlinks.

Although a spider provides a sound theoretical model by which to locate all avail-

able Web pages, there are technical limitations. Spiders typically operate from fast

machines linked to high-speed data connections. However, the sites that host Web

servers are often not so fortunate. If a spider requests multiple pages from a low-

powered server, then that server may be unable to satisfy those requests, or may be

27

unable to satisfy requests from real users.

While there is no formal standard on how often a spider can request a page or how

many pages a spider can request from a server at any one time, there is an informal

guideline that limits how many requests a spider can issue to a server in a set time

period [59]. Most spider operators use the guideline of no more than one page per

minute. With several million URLs to choose from, this would not seem to be much of

an issue even when requesting a thousand URLs per minute. However, this limitation

can impact how long it takes to index an entire site. For example, at the time of this

writing the University of Washington Computer Science and Engineering Web site

provided nearly 50,000 distinct HTML pages in one week. At a rate of one page per

minute, it would take a spider thirty-four days to index every page.

2.5 The Coherence Problem

Web documents are constantly modified, added to the Web, and removed from the

Web. Thus, Web indices are constantly going out of date. The Coherence Problem

is the problem of keeping the index consistent with the contents of the documents

that are indexed. It takes as input a searchable index, and returns as output a

searchable index whose content is consistent with the original source data. There are

two approaches to solving the Coherence Problem. The first approach involves some

system whereby index maintainers are notified that a particular page has changed.

They can then reindex the page immediately and ensure a coherent index. The second

approach periodically polls the pages, and reindexes them when they change. If the

polling interval is frequent enough, then the index will not be incoherent for very

long.

Although there have been many proposals suggested to allow notification to inter-

ested parties [26, 86, 23], none of them are widely used in practice. The main reason is

that there is no widely deployed software to handle the notification. Server operators

28

are therefore required to locate, install, and maintain one which may not support

the appropriate notification protocols. Not surprisingly, most server operators do not

support any notification system, and therefore index maintainers do not rely on one.

If a single notification standard emerged, then a notification method may become a

feasible solution. However, that is not likely in the near future [57].

Polling can also be used to keep large indices up to date. Documents are polled at

some rate, and reindexed when they change. Further spidering may also be necessary

if new pages are discovered. A key question is when and how often a document should

be polled. Some documents change daily, and others change rarely, if at all. One

common method is to learn how frequently a page changes using a method similar to

binary search [85]. Initially, pages are revisited after a set time. If the page changes,

the interval is halved. If the page remains the same, the interval is doubled. This

process continues until an appropriate frequency is found, or global maximums or

minimums are reached. Typical maximums and minimums are revisiting a page no

more than once per day, and at least once in four months.

Polling is analogous to repeated spidering when the URLs to be polled are given

to the spider as starting documents. Most polling is in fact done using a spider. As

a result the resource requirements as well as the server guidelines of polling are the

same as for spidering. Continuing our example above, if it takes thirty-four days to

fully index a site with 50,000 pages, then it will take an additional thirty-four days to

completely reindex it. Even using the binary search method to determine the polling

frequency, starting at thirty-four days it would take over two months to determine

that a page on this site changed daily.

2.6 Real-world constraints and Web search engines

One could argue that a spider will eventually visit every page on the Web within a

reasonable time. The Excite spider visits 10 million pages per week [81], and high

29

estimates for Web growth are 25 million pages per month [12]. Since the Excite spider

is visiting pages faster than new pages are being created, Excite should be able to

index the entire Web given enough time.

One might further argue that polling could be used to keep an index up to date.

Even though it may take two to three months to determine the proper polling fre-

quency, it would eventually be determined. And one could claim that most pages do

not change frequently, therefore the guidelines on how often documents can be polled

from a single server will not be violated if the proper polling frequencies are used.

In an ideal world, a spider-based search engine that updates its index using polling

could maintain a comprehensive index of the entire Web. However, Web search ser-

vices are also bound by several real-world constraints: how much storage is available,

how many CPU cycles are available, how quickly results must be returned to the user,

and how many users will access the system. While storage is relatively inexpensive,

fast and reliable storage comes at a premium. Even if the cost of storage is not an

issue, the larger an index, the more CPU cycles may be spent in performing retrievals.

This directly impacts the speed by which a search engine can return results to the

user. Furthermore, search servers can only do so much work. As CPU utilization

for a single query increases, the number of queries that can be processed by a single

server decreases. Thus, in order to satisfy the same user base, additional servers may

need to be installed.

Figure 2.6 shows the size of the major Web search service indices from December

1995 through March, 1999. Clearly, if the size of the Web is 150 million documents

then only AltaVista provides a comprehensive Web search. However, as we show in

Section 5.1.4, the size of the Web is on the order of 600 million documents. A more

interesting trend is that the index sizes for many of the search services have remained

surprisingly unchanged, even though the Web has grown consistently during the time

shown. In particular, HotBot, Excite, InfoSeek, and WebCrawler have used the same

size index for the past year, and Lycos’ index remained at the same size for nearly

30

 150

 130

110

 55
 50
 45

20

20

40

60

80

100

120

140

160

Dec-
95

Mar-
96

Jun-
96

Sep-
96

Dec-
96

Mar-
97

Jun-
97

Sep-
97

Dec-
97

Mar-
98

Jun-
98

Sep-
98

Dec-
98

Mar-
99

In
de

xe
d

P
ag

es
 (m

ill
io

ns
)

AltaVista NorthernLight Inktomi Excite Lycos InfoSeek WebCrawler

Figure 2.6: Sizes of search services’ indices (in millions of pages).

This figure shows the size of the indices of the most popular spider-

based search services in millions of pages from December, 1995 through

March, 1999. This data comes from www.searchenginewatch.com, an

online site that monitors Web search services [105]. This data was col-

lected from press releases and other public information about the engines,

and thus should be considered to be an upper bound.

31

two years before increasing in June of 1998. These trends support the hypothesis

that indexes grow not when new pages are discovered, but rather when substantial

resources are added to the service. While slightly dated, a 1997 article by Brake

gives a good discussion as to why this is the case [16], indicating that search service

companies are focusing on improving finding quality matches within their index rather

than expanding their index.

2.7 Summary

In this chapter, we presented the Web Search Problem: How can a user find all relevant

information about a topic on the Web? We highlighted various automatic browsing

techniques which can provide relevant information, but which do not guarantee to

provide that information in a timely manner. We then described how Information

Retrieval engines could address the Web Search Problem. However, using Informa-

tion Retrieval engines introduces the Web Discovery Problem: How can all Web pages

be located? We highlighted the major techniques for addressing the Web Discovery

Problem: collective user histories, distributed search, and spiders. We have shown

how an Information Retrieval engine can use a spider-based index to provide a com-

prehensive search. We then presented the Coherence Problem: How can the contents

of a Web index be kept up to date with the Web? We have also shown how polling

can address this problem to a reasonable degree.

Finally, we have shown that spider-based search services have real-world con-

straints that limit their ability to provide a comprehensive search. We now turn to

our solution to providing a more comprehensive search than using any major Web

search service: MetaCrawler.

32

Chapter 3

METACRAWLER ARCHITECTURE

In the previous chapter we highlighted the key techniques to solving the Web

Search Problem. The most promising of those techniques, spider-based search ser-

vices, are prevented from providing a comprehensive index of the Web by real-world

constraints. An obvious question is whether a comprehensive search can be accom-

plished by querying multiple spider-based search services and combining the results.

To answer this question, we designed and implemented a meta-search engine.

A meta-search engine is one that does not use its own index. Instead, it selects

other search services to query, forwards the query to those sources, collates and post-

processes the results, and then returns those results to the user. The motivating belief

of a meta-engine is that it is as good as the sum of its parts. Our claim is that our

meta-engine, MetaCrawler, is greater than the sum of its parts, which in this case are

some of the best Web search services available.

The remainder of this chapter is organized as follows:

• We claim that a solution to the Web Search Problem is the MetaCrawler meta-

engine. Therefore, it is necessary to define what the MetaCrawler meta-engine is

and does. We begin this chapter with a high-level overview of the MetaCrawler

meta-engine. This will set the foundation for the rest of the thesis.

• Implementing a meta-search engine is trivial, but a trivial design is likely to

be very limited. We designed MetaCrawler with much broader goals, which we

present in Section 3.2.

33

• Satisfying our design goals is not straightforward. In Section 3.3 we present an

overview of the architecture we designed to address our design goals. We also

present the three main components to our architecture: the Client Layer, the

Server Layer, and the I/O Layer.

• An assumption in designing a meta-engine is that the only input will be a user

query. An extension to the MetaCrawler architecture allows search service in-

formation to be submitted as well to dynamically extend the number of services

MetaCrawler can query. This extension is described in Section 3.4.

• Finally, we evaluate how well our architecture satisfied our design goals in Sec-

tion 3.5.

3.1 MetaCrawler overview

MetaCrawler is a search service that uses a meta-engine to conduct the search. Meta-

Crawler and other search services that use meta-engines are often called meta-search

services. MetaCrawler has certain requirements in order to be a competent meta-

search service. First, it must take user queries and format them appropriately for

each search service. Next, it needs to correctly parse and aggregate the results from

the other sources. Finally, it has to analyze the results to eliminate duplicates and

perform other checks to ensure quality. Figure 3.1 details MetaCrawler’s control flow.

In addition, there are several additional features needed to make MetaCrawler

usable by average Web users. These features strongly impact how MetaCrawler is

designed. First and foremost, MetaCrawler needs a user interface that the average

person can understand. Second, MetaCrawler needs to perform its tasks for the user

as quickly as possible. Finally, MetaCrawler needs to be able to adapt to a rapidly

changing environment.

34

User Enters Query

Formulate Queries

Lycos Yahoo Excite

Post-Process Results

Download ReferencesCollate Results

Remove Duplicates

Output Results to User

Download Results?

No

Yes

Figure 3.1: MetaCrawler control flow.

The control flow for MetaCrawler. The user enters a query, which

is then translated and forwarded to the sundry Web information sources,

such as Lycos and Yahoo!. The results from these services are then col-

lated, duplicate entries are removed, and post-processing is done. If the

results are downloaded, they will again need to be collated, have duplicates

detected, etc. Finally, the results are sent to the user.

35

3.1.1 Understanding query and output formats

Once the user enters the search terms and various parameters, MetaCrawler translates

the terms into queries that each of the underlying Web search services can process. It

then submits those queries and parses the results that are returned into a canonical

form for further processing. The code that does this is encapsulated in a wrapper. A

wrapper takes as input a query with appropriate parameters, and returns as output

a list of tuples. A tuple is a data structure that contains the information for each

individual result. The tuples used by MetaCrawler describe document references. A

document reference is the URL, title, snippet, and confidence score for the given

document.

Wrappers handle the problem of dealing with different search services that have

different user interfaces and query languages. Wrappers provide a common program-

ming interface to each search service. They handle the translation of the query into

the search services’ particular formats, and handle the parsing of the results into a

canonical format. Wrappers typically do not submit the translated query directly,

but instead rely on hooks to the appropriate I/O interface.

Typically, each search service requires its own wrapper. Each wrapper requires its

own unique code to handle query translation. This translation is typically not difficult,

but there are some details involved. For example, Alta Vista prefers searching for

phrases by enclosing the phrase in double quotes, e.g. “Utah Jazz,” whereas HotBot

uses a menu option that selects phrase searching. Unfortunately, it is these details

that typically require some degree of manual coding for each search resource. There

has been some work at alleviating the need for manual coding [78], but there are still

no general solutions that handle feature sets as rich as the search services. Fortunately,

Web search services do not change their query format frequently, and therefore manual

coding is an acceptable option.

Translating a user query into the proper format for each search service only ad-

36

dresses half of the problem. The wrapper must also parse the results of the query

into a canonical format in order to collate the results. Again, it is not difficult to

write a parser for the results, but one must write a unique parser for each search re-

source. Fortunately, even though Web search services do change their output format

somewhat frequently, there have been some advances in automatically generating and

maintaining result parsers [61].

3.1.2 Collation and duplicate detection

Once the wrappers have returned the results in a canonical format, it is necessary

to identify any duplicates. Detection of duplicate references is important for three

reasons. First, users do not want to spend time looking at duplicate results. Sec-

ond, it is often desirable to increase a reference’s ranking if multiple search resources

return that reference. Third, removing duplicates will save any cost associated with

processing the same document twice. Detecting duplicate references is difficult with-

out the full contents of a particular page, due to host name aliases, symbolic links,

redirections, and other obfuscating factors. Even with the full contents of a page,

duplicate detection is not always trivial as there are often insignificant differences in

two pages’ text. For example, copies of the manual often contain a pointer to the

local maintainer at the bottom of the text. MetaCrawler uses several heuristics to

detect duplicates; these are described in detail in Section 4.3.

Once duplicates have been detected, MetaCrawler needs to collate the results from

each search service into a single list. This task is difficult because each service uses a

different ranking criterion to order their results, and some services don’t report any

information about the ranking besides the order. MetaCrawler uses a novel colla-

tion algorithm called Normalize-Distribute-Sum. This algorithm interleaves results

based on a number of features, including the document ordering, number of services

returning the document, and service-specific confidence score. This algorithm will be

described in detail in Section 4.2.

37

3.1.3 Highest common denominator of services

Supporting a rich query feature set can be problematic. Some services support all the

query features that MetaCrawler provides, whereas others are lacking in particular

areas such as phrase searching or weighing words differently. Rather than providing

“lowest common denominator” service and support features only found in all engines,

MetaCrawler implements features not available from some or any service. One way it

accomplishes this is through downloading the pages referred by each service and ana-

lyzing them directly. The time required to download all pages in parallel adds no more

than a couple of minutes to the search time, which is a reasonable quality-for-speed

tradeoff for many users. In addition, MetaCrawler is able to process results that have

arrived while waiting for others. Therefore, minimal computation time is required

after all the references have been retrieved. Most users prefer to have the results

displayed quickly. Thus, even though downloading and post-processing documents

does improve quality substantially, users must explicitly activate this feature.

Downloading and analyzing references locally has proven a powerful tool for im-

plementing features not found in some services. For example, when Lycos was first

deployed, it did not handle phrase searching. MetaCrawler simulated phrase searching

by sending Lycos a query for documents containing all the query words, downloading

the resulting pages, and extracting those pages that actually contain the appropriate

phrase rather than just the words somewhere on the page. Using similar methods,

we are able to handle other features commonly found in some, but not all, search

services, such as requiring words to be either present or absent in pages.

In addition to simulating features on a particular search service, we are able to

implement new features. First, by downloading a reference in real time, we verify

that it exists. This has proven to be a popular feature in itself. We are also able to

apply sophisticated ranking and clustering algorithms to the documents, as well as

extract words from the documents that may be useful for refining the query [112, 15].

38

3.1.4 Highest quality results and fastest information location time

A claim that we could make of MetaCrawler is that it returns the highest quality

results available for a given query. MetaCrawler requests the top k documents from

each service and collates them. The top k documents that MetaCrawler returns

are thus the highest quality documents as determined by the various search services.

Thus, the top k documents returned by MetaCrawler should be of higher quality than

the top k documents returned by any single search service.

Another claim we could make is that MetaCrawler provides fastest overall method

of locating relevant information. Without meta-search, in order to find relevant in-

formation a user needs to visit a search service, enter the query, and analyze the

results that are returned. If the proper information is not present, the user continues

to the next search service and repeats the process. In contrast, using MetaCrawler

a user enters the query once, waits slightly longer than the slowest service, and then

analyzes all the results at once. If relevant information is likely to be present on all

search services, then on average users will find relevant information much faster than

by using traditional Web search services in a serial manner.

Our focus on MetaCrawler is providing a comprehensive search, not necessarily

the best ranking of the results nor providing the fastest time to locate information.

As we show in Section 5.1, evaluating these claims would also require a substan-

tial user study, which we were unable to accomplish. Therefore, even though our

practical experience indicates these claims are true, we did not evaluate these claims

scientifically.

3.2 Design goals

MetaCrawler was designed, not simply as a meta-search engine, but as a general

meta-search tool that can be applied to a variety of searching problems. We designed

MetaCrawler with the following goals:

39

Expandable: We designed MetaCrawler as a research testbed. Therefore, it was

critical that the author as well as other researchers could add to MetaCrawler

or build on top of MetaCrawler to further their own research.

Low maintenance cost: While we designed MetaCrawler to be a public service,

MetaCrawler was operated by graduate students with limited time. Therefore,

it was important that they could maintain MetaCrawler with as little effort as

possible.

Fast response time: Fast response time is critical for two reasons. First, we de-

signed Metacrawler to be a publicly available Web service. Therefore, to retain

users it had to have good performance relative to the other search services. Sec-

ond, there were limited computing resources available to operate MetaCrawler.

Therefore, the faster it was able to satisfy a user query, the more users Meta-

Crawler would be able to help.

Scalability: When we first designed MetaCrawler, new search services were becom-

ing available in rapid succession. Therefore, we designed MetaCrawler to incor-

porate a plethora of search services.

Portability: We designed MetaCrawler to exist not only as a Web-based search

service handling millions of users, but also as client application that would

service just a single user. As a stand-alone client application, the resources

available to it are likely to change, and thus our design needs to accommodate

likely changes.

3.3 Architectural layout

To facilitate the design goals, we designed MetaCrawler in a modular fashion as de-

picted in Figure 3.2. There are three main components: the Client Layer, the Server

40

Server LayerServer Layer

Aggregation
Engine

Harness

Wrappers

I/O LayerI/O Layer

Network
Manager

Cache
Manager

Database
Manager

Web Local Storage Database

User Interface Application

Key
External Unit Module API BoundaryAPI Boundary

Client LayerClient Layer

User
Search Client

Application
Search Client

Figure 3.2: MetaCrawler architecture.

41

Layer, and the I/O Layer. The Client Layer contains the MetaCrawler interface code

to external entities. Users interact with MetaCrawler through an external user in-

terface module, such as a CGI translation program, and applications interact with

MetaCrawler through custom interface modules. The Server Layer is the bulk of the

MetaCrawler meta-search engine, and is responsible for selecting search services to

use, submitting queries, parsing results, collating documents, and detecting dupli-

cates. The I/O Layer is the low-level code that performs the queries and retrieves

Web documents. These units are described in the following sections.

3.3.1 Client Layer

MetaCrawler was designed to be accessed by both users and controlling applications.

In order to accommodate different user interfaces as well as different application

demands, MetaCrawler uses a number of Search Client modules, which are contained

within the Client Layer. Each Search Client module contains interface code that

bridges the Server Layer to the controlling entity. The appropriate Search Client

module is loaded when the MetaCrawler receives a query, and persists until the query

is satisfied. The Search Client receives as input the user query, which is comprised

of search terms, query logic, and other appropriate parameters. The output of the

Search Client is the final results to be displayed by the controlling entity. Optionally,

the Search Client may also output status information as the query is executing.

There are two main Search Clients available in the MetaCrawler code: a CGI

(Common Gateway Interface) Client, which bridges the Server Layer with a tradi-

tional Web-based form interface, and a Java Client, which bridges the Server Layer

with a controlling Java applet. This applet is used to provide real-time feedback and

browsing as described in Section 4.1.2. However, it is not difficult to add additional

Search Clients should a new external entity require one. For example, a new external

application may require a new Application Client Layer, as shown in Figure 3.2.

42

3.3.2 Server Layer

The Server Layer contains the two core modules for MetaCrawler: the Aggregation

Engine and the Harness. The Aggregation Engine is the control unit of this architec-

ture. It accepts as input a user query. The Search Client module may have modified

the original user query slightly, but typically there is little deviation. As output, it

returns a collated list of document references to be formatted appropriately by the

Search Client. The Aggregation Engine is responsible for the final selection of search

services to use. It selects the appropriate search services and passes this information

as well as the user query to the Harness.

The Harness is the unit which contains the information about available search

services. The Harness is simply a collection of wrappers, and thus forwards the user

query to the appropriate wrappers and returns a concatenation of their results. The

Harness accepts as input the user query, given to the Aggregation Engine, as well as

which search services to query and returns as output the raw document references

obtained from the wrappers used.

The Aggregation Engine receives the document references from the Harness. It is

then responsible for the collation of those references, which it returns to the Search

Client. The Aggregation Engine contains the main event loop of the meta-engine.

Therefore, it is responsible for evaluating the halting criteria. Typically, this is ei-

ther when all wrappers have finished or timed out, or when the connection to the

controlling entity has been severed.

Types of wrappers

Wrappers can be partitioned into three categories:

Hard Coded: A hard coded wrapper is simply a wrapper with all the pursuant

information encoded into the wrapper at compile time. These are the easiest

to create, but are often brittle as changes in the search service may cause the

43

wrapper to fail.

Parameterized: A parameterized wrapper is a wrapper that requires extra param-

eters either at run or query time. For example, a source may require a user

name and password for access, which need to be passed in as parameters to the

wrapper.

Dynamic: A dynamic wrapper is a wrapper whose specification is not determined

until run or query time. For example, a service which uses Apple’s Sherlock

specifications downloads the specification at query time [2].

MetaCrawler uses hard coded wrappers for most sources, and some Parameter-

ized wrappers for extensions that will be covered in Section 3.4. While hard coded

wrappers are in fact very susceptible to breaking due to minor changes in the search

service, most Web sources do not change very often. Further, there has been recent

work investigating improved ways to automatically adjust wrappers to some changes

[60].

Query translation and result parsing

Wrappers are responsible for translating the user query into the appropriate format for

the search services. For some search services, this is simply creating an appropriate

information request to obtain a single document containing the results. However,

for many search services, multiple information requests must be issued to obtain

the desired information. This may involve some extra processing of the previously

returned document, as it may have information required to create the next request.

The other primary task for a wrapper is to parse the document returned by a search

service into tuples, which in our case are the elements of document references. This is

typically solved by simple regular expression parsing. However, some documents may

44

require more sophisticated techniques. Typically, when a wrapper breaks because of

a change in the search service, it is the parsing component of the wrapper that fails.

3.3.3 I/O Layer

The key to high-performance in a meta-search engine is a good I/O Layer. For input,

the I/O Layer takes information requests and returns either the requested information

from a search service or an error code. The I/O Layer contains the modules that

support interaction between different types of storage. MetaCrawler uses a Network

Manager to interact with the World Wide Web and a Cache Manager to interact

with files cached on local storage. Other managers could be easily added, such as a

Database Manager to interact with a database.

The key to MetaCrawler’s high-performance I/O Layer is that I/O requests are

handled in parallel, meaning that the latency of any request is not affected significantly

by other requests in the system. Parallelism is also what makes implementing the I/O

Layer non-trivial; how it is implemented is discussed in Section 4.4.

3.4 Integrating user-defined search resources

Most meta-engines are only able to query a fixed set of search services, decided in

advance by the authors of the meta-engine. An improvement to this paradigm is to

allow users to define and use new search services, such as a local Intranet search service

or an index of their browser history. It is an open question on how to extend the set

of search services available to the user. We highlight two methods that allow users to

add search services to a meta-engine, wrapper templates and wrapper libraries, and

then detail the technique used by MetaCrawler.

45

3.4.1 Wrapper libraries and templates

One method of allowing users to add search services to a meta-engine is to use a

wrapper library, which is a collection of publicly available wrappers. For example,

both Apple Inc. and Apple Donuts maintain libraries of wrappers for the Sherlock

meta-engine [2, 3]. These wrappers contain the information necessary to make a

query as well as extract the URL, anchor text, snippet, and confidence score from the

results. However, there are two substantial drawbacks with using wrapper libraries.

The first is that because these wrappers are written for general use, they assume that

search services are in fixed locations, e.g. Excite is available at www.excite.com.

Thus they cannot be used for search services with dynamic locations. The second is

that these wrappers have no inherent method of authorizing the user for a particular

source. Users would be required to enter authorization information at query time.

Cookies, which are small pieces of information stored on a browser, cannot be used

to shortcut this authorization step. Users who share browsers will also share cookies,

and thus if cookies are used one user could use the authorization of another. While

potentially tedious, entering authorization information for each session may work for

a client-side meta-engine. However, giving authorization information to a publicly

available meta-search service is suspect, as the meta-search service could record the

authorization information for illicit use. Thus, only publicly available sources can be

used.

Another option is to use a wrapper template, which is simply a general purpose

wrapper that requires a user to identify certain fields, such as the query field. For

example, users use this technique to add information sources to the commercial client-

side meta-engine WebCompass [83]. To fill out the template, WebCompass instructs

the user to issue a query using particular terms to the search service. WebCompass

extrapolates how to issue a general query by simply replacing the query terms with

user terms. WebCompass then uses a primitive parser to extract URLs. It makes the

46

assumption that URLs on a results page that point to remote sites are the results,

and that URLs that point to internal pages are help pages, navigational aids, or other

local information not relevant to the search. The parser simply extracts all URLs

that are non-local. Unlike the wrappers available from the Sherlock wrapper libraries,

WebCompass’ wrappers are unable to extract the confidence score and snippet.

Wrapper templates are able to incorporate search services with dynamic locations.

However, the location needs to be entered each time it changes, which may be a

burden for the user. In addition, a properly expressive wrapper template can allow

for user authentication. This belies one of the limitations of wrapper templates. While

wrapper templates allow the integration of numerous user-defined sources, they are

only as expressive as the actual template. For example, the WebCompass template is

only able to generalize search services that accept a single set of query terms; search

services that accept two or more sets, such as one that accepts a book title in one set

and an author in another cannot be integrated into this scheme. The WebCompass

template only allows the query terms to be modified. Other options, such as setting

the query logic or maximum number of results, are immutable. Finally, the results

must be non-local to the search service. A search service that returns local documents,

such as the search page for an Internet directory like Yahoo!, will not be correctly

parsed.

3.4.2 Dynamic Service Protocol

Users can add a number of search services using wrapper libraries and templates.

However, they are still unable to add a restricted access source with a dynamic location

without continually entering the access and location information. To address this

problem, we created the Dynamic Service Protocol. The Dynamic Service Protocol is

a protocol whereby a controlling application informs MetaCrawler of the location of

a search resource as well as how it should access that resource. To demonstrate this

protocol, we incorporated the Clio system into MetaCrawler.

47

The Clio system

Clio allows a user to search his or her Web history [63]. To use Clio, a user’s Web

browser accesses the Web through a Clio proxy. In addition to providing Web access,

the proxy transparently inserts documents into a private, searchable index. Clio is

part of CollabClio, a project that enables users to search through other users’ histories.

The focus of the Clio research was on the privacy aspects of the system. One aspect

of the system is that users had to provide proper authentication in order to search

any index, including their own.

MetaCrawler interface to Clio

Rather than having users use a Clio interface to search their own history and then

a separate MetaCrawler interface to search the Web, we integrated Clio into Meta-

Crawler. In order for MetaCrawler to query Clio, it needed the location of the user’s

Clio index and the authentication information to access it. The Clio proxy was en-

hanced to provide this information when it accessed MetaCrawler. MetaCrawler then

instantiated a parameterized Clio wrapper with this information. The user was given

the option of searching just his or her history. MetaCrawler then queried the user’s

Clio index along with the other sources if appropriate. Clio’s results were then col-

lated with the rest for a uniform appearance. Figure 3.3 provides a graphical overview

of this integration.

One deficiency with the prototype implementation is that it used the user’s au-

thentication information. While the testers of Clio were local to the University of

Washington and trusted the authors of MetaCrawler not to record this authentica-

tion information, in a deployed system more security is needed. A simple but some-

what insecure idea would be for Clio to create a temporary one-use password that

would be valid for one query from the MetaCrawler. Better ideas would be to use

some kind of secure transmission via the standard Secure Sockets Layer (SSL) [76] or

48

User

History
Index

Browser Clio

MetaCrawler

Web

Figure 3.3: Clio and MetaCrawler integration.

A user connects to the Web via a Browser. The Browser connects to

the Web via Clio, which copies all pages browsed into a History Index.

When a user connects to MetaCrawler, Clio sends additional information

that allows MetaCrawler to query the History Index. This information is

then merged with results from other search services, and transmitted back

to the user.

49

authentication using a public key or capability-based system [87, 11].

The integration of Clio into MetaCrawler via the Dynamic Service Protocol re-

quires no explicit user interaction. Rather the Clio system handles that interaction

directly. In this manner, the Clio system is able to impart to MetaCrawler all the

information necessary to search a particular search service. This technique extends

easily to other kinds of search services, such as pay-per-query sources or corporate

intranet search resources available via a dynamic connection through a firewall.

3.5 Architecture evaluation

MetaCrawler’s architecture was largely successful in attaining its goals. We now show

how well MetaCrawler met each of its design goals in the following sections.

3.5.1 Expandable

MetaCrawler’s architecture was successful at enabling a wide variety of enhancements

and additions to the system. By separating the Client Layer from the Server Layer,

we were able to experiment with a number of user interface designs beyond just the

simple HTML forms shown in Section 4.1. For example, Christin Boyd designed and

developed a query refinement system as part of her senior thesis [15]. This system

attempted to aid the user in improving a given query as well as provide us with

failure data on poor queries. Greg Lauckhart added a “View by Site” option to the

Search Client that sorted the results not based on traditional relevance ranking but in

alphabetical ordering by URL [65]. Separating the I/O Layer from the Server Layer

gave us similar flexibility. For his senior thesis, Darren Schack developed a caching

mechanism that would store pages downloaded from the Web to benefit repeated or

similar queries [90].

A more sophisticated extension is Grouper [112] by Oren Zamir and Oren Etzioni.

Grouper adds a clustered output to MetaCrawler, which displays URLs grouped into

50

clusters based on common terms and phrases. Rather than creating clusters after

all references are received, Grouper creates the clusters as references are received.

MetaCrawler is thus able to return the results immediately once all the references have

been received. To do this, Zamir and Etzioni created a superclass of the Aggregation

Module which handles the clustering.

Two large-scale applications using MetaCrawler will be described later. Ahoy! The

Homepage Finder by Shakes, Langheinrich, and Etzioni is a complete application that

interfaces directly with MetaCrawler [96]. The second is HuskySearch [95], a meta-

engine based on MetaCrawler after MetaCrawler was licensed to Go2Net Inc. in 1996.

These will both be discussed in detail in Section 4.5.

3.5.2 Low maintenance cost

Change in the output of Web search services is the primary cause of maintenance in

MetaCrawler. Addressing these changes requires updating the appropriate wrapper

to handle the new output format. These are typically trivial changes and do not

amount to a great deal of time.

The secondary cause for maintenance is when a new project is added to Meta-

Crawler, such as the senior theses. By dividing MetaCrawler into the various func-

tional units, most projects are able to fit inside a particular unit. Thus a minimum

of coding is necessary to incorporate a new enhancement to the rest of the system.

One way to implement MetaCrawler would have been to use a single MetaCrawler

process to handle multiple queries, where presumably each query session would be

contained in its own thread. Instead, we used a single MetaCrawler process for each

query. This decision was initially made for convenience, but was continued to keep

the overall MetaCrawler system robust. Since MetaCrawler was a research testbed,

there were often errors in the deployed code. If any one query session encountered an

error, only that query would be terminated in case of a crash, while the other queries

would be able to continue. The one process per query model also made debugging

51

more straightforward than a multi-threaded model.

3.5.3 Fast response time

The key module that affects the wall-clock performance of MetaCrawler is the Network

Manager in the I/O Layer. By separating the I/O Layer from the Server Layer, we

were able to experiment with a number of different techniques and enhancements

without rewriting other modules. Even after we finally settled on the event-driven

model, described in Section 4.4, we were able to continue to make improvements, such

as with the Cache Manager, again without affecting other modules.

The other aspect of the architecture that added to improving overall performance

is the linear data traffic pattern. Most modules exist in a chain, communicating with

adjacent modules. This makes bottlenecks straightforward to identify via profiling.

3.5.4 Scalability

Scaling the number of search services MetaCrawler accessed is a challenging problem.

We decided to use two modules to address this problem. The Harness module presents

each search service through a uniform interface. The Aggregation Engine then uses

the appropriate search services to collect information and conducts the appropriate

collation, duplicate detection, and post-processing. The Harness is separate from the

Aggregation Engine so that creation and maintenance of wrappers can be completed

without the need to modify the Aggregation Engine. There is no limit on the number

of wrappers the Harness could contain; the difficulty is in writing and maintaining

them.

One area that we did not explore is Query Routing. Query Routing is the process

of selecting appropriate search resources from a large set of resources. Proper Query

Routing is the key requirement for a meta-engine to scale to a large number of search

services. There are a number of Query Routing schemes available [98, 46]. However,

52

since the actual implementation of MetaCrawler used under ten search resources,

MetaCrawler defaults to broadcasting to all available general Web search services.

3.5.5 Portability

We have had great success in compiling MetaCrawler on different architectures, in-

cluding DEC OSF, Linux, and Windows NT. The only port that required significant

effort was the Windows NT port, which required a different I/O Layer implemen-

tation. However, because of the architectural modularity, the rewriting of the I/O

Layer did not require other units to be modified.

MetaCrawler is an intelligent interface to powerful remote services. It does not

require large databases or large amounts of memory. Therefore, MetaCrawler is not

limited to residing on high-end servers. While MetaCrawler was initially implemented

as a universally accessible service at the University of Washington, we have created

prototype implementations that reside on the user’s machine. Although this prototype

provided no new functionality over the existing service, an individualized MetaCrawler

client that accesses multiple Web search services has a number of potential advantages.

First, the user’s machine bears the load of the post-processing and analysis of the

returned references. Given extra time, post-processing can be quite sophisticated.

For example, MetaCrawler could use slower but potentially better clustering methods

than Grouper, or it could engage in secondary search by following references to related

pages to determine potential interest. Second, the processing can be customized to the

user’s tastes and needs. For example, the user may choose to filter advertisements or

parents may try to block X-rated pages. Third, MetaCrawler could support scheduled

queries, e.g., What’s new today about the Seattle Mariners? By storing the results of

previous queries on the user’s machine, MetaCrawler can focus its output on new or

updated pages. Finally, for pay-per-query services, MetaCrawler can be programmed

with selective query policies, e.g., “go to the cheapest service first” or even “compute

the optimal service querying sequence.”

53

3.6 Summary

In this chapter we have presented MetaCrawler, a meta-engine for information re-

trieval on the Web. MetaCrawler addresses some of the issues inherent with spider-

based Web search services. We have detailed MetaCrawler’s architecture, which was

designed to promote expandability, low maintenance, performance, scalability, and

portability, and we have described how the architecture was able to accommodate

those goals. We now turn to some of the technical details of MetaCrawler.

54

Chapter 4

METACRAWLER IMPLEMENTATION

In the previous chapter, we have presented our meta-engine architecture. While

it may seem straightforward to implement a meta-search engine based on that ar-

chitecture, there are several issues that arise in order to make a practical and useful

meta-search service for the World Wide Web. We address the main technical chal-

lenges to MetaCrawler:

• Comprehensive Web search provides little value if users cannot utilize its func-

tionality. How can average Web users take advantage of the features of Meta-

Crawler?

• Each search service ranks documents in a different manner. With the limited

information about documents that is returned, can results from heterogeneous

search engines be combined in a way that is not biased towards any service?

• As mentioned above, the results that are returned from search services contain

limited information about a document. Can duplicate documents be detected

with just this limited amount of information?

• Querying search services and downloading the Web pages they return in real

time takes a significant amount of system resources. This is compounded by

multiple queries on a single machine. What is the best parallel technique to

handle this load?

• Users provide a large amount of both positive and negative feedback through

55

e-mail and other forms of direct communication. What are the enhancements

to MetaCrawler that most benefit users?

4.1 MetaCrawler user interface

The motivating design principle behind MetaCrawler is that the user should say what

he or she wants, and MetaCrawler should determine automatically where to search

and how to search. This was inspired by the Internet Softbot project [36]. In addition,

the user should be allowed to specify what he or she wants without learning a complex

syntax or feature set. With this in mind, it is important that MetaCrawler have a

good user interface that allows the user to communicate what he or she is searching

for.

While giving the user a Web form with added expressive power was straightfor-

ward, presenting the user with a form that would facilitate using novel features of

our meta-search engines proved to be a challenge. We strove for a balance between a

simple search form and an expressive one, keeping in mind interface issues described

by service providers [79]. Our MetaCrawler version 1.0 interface design was based

on the common schemes of contemporary Web search forms, which were at the time

very Spartan: a text entry box for the search terms, a search button, and occasionally

some extra controls for various parameters.

4.1.1 Search form

The default query syntax used by most contemporary search services was simple

keywords separated by spaces. Without any query modifiers, documents matched the

query based on how many of the query terms the document contained. For example,

the query John Cleese would return any document that contained the term “John”

and “Cleese.” However, there was no implicit ordering to the terms, thus a document

containing “John Grisham” and “Hector Cleese” could also be returned. There is

56

also no implicit requirement that all terms be present in documents, thus documents

containing just “John” or “Cleese” could also be returned.

In our version 1.0 design, we focused on improving the query syntax. We added

query modifiers similar to InfoSeek’s search syntax: quotes or parentheses were used

to define phrases, a plus sign designated a required word, and a minus designated a

non-desired word [49]. For example, to search for “John Cleese,” requiring that both

“John” and “Cleese” appear together, the syntax required is (+John +Cleese). In

addition, we used a three button design for describing the query logic of the search:

Search for words as a phrase: Treat the search terms as a single phrase, and at-

tempt to match the phrase in pages retrieved

Search for all of these words: Attempt to find each word in the search terms

somewhere in the retrieved pages. This is the equivalent of logical “and” for all

terms.

Search for any of these words: Attempt to find any word in the search terms in

the retrieved pages. This is the equivalent of logical “or” for all terms.

We adopted this design from Open Text’s Web search service, which ceased opera-

tion in 1996 [77]. The query logic and query syntax options have some overlapping

functionality. The query logic options are targeted to the naive user and are not

very expressive. The query syntax is targeted to the more experienced user who

would write more sophisticated queries. We considered a fully Boolean interface to

MetaCrawler. However, feedback we received from users suggested that they often

confused Boolean expressions. For example, they used AND when they meant OR,

or thought that OR meant EXCLUSIVE OR. Therefore, we did not make a fully

Boolean interface to MetaCrawler.

In addition to the search term entry box, we provided various advanced options

which could be activated via two menus. These allowed the user to indicate where

57

the desired information should be located. The first menu described a coarse grain

locality, with options for the user’s continent, country, and Internet domain, as well as

options to select a specific continent. The second menu described the various Internet

domain types, e.g. .edu, .com, etc. Users could use these options to focus their search

results to particular logical or geographical domains. Figure 4.1 shows a screenshot

of the MetaCrawler version 1.0 search form.

Even with explicit examples presented on the search form, users often introduced

syntactical errors causing the resulting search to produce an entirely irrelevant set

of hits. For example, users would often omit spaces between words when using ei-

ther ‘-’ or ‘+,’ turning the search text “+Monty +Python -snake” into the single

term “+Monty+Python-snake.” Since terms with ‘+’ and ‘-’ were acceptable, such

as “C++” or “Berners-Lee,” queries such as this were treated as one large word and

unsurprisingly returned no results. In addition, the combination of the radio buttons

describing the query logic in conjunction with search term syntax added some extra

confusion.

Figure 4.2 shows the MetaCrawler version 1.5 design. We reduced the need for

extra syntax, and instead ask the user to select the type of search. The older syntax

is still supported, although it is not advertised prominently on the main search page.

After we changed the search page to the version 1.5 design, the number of malformed

requests dropped significantly, although user education may have also contributed to

that phenomenon.

4.1.2 Feedback with server-push and Java

Even though we strove to make MetaCrawler as fast as possible, it was still slower

than other Web search engines. As a result, users would become impatient and

cancel the query, presumably to visit another search service. Therefore, we provided

the user with feedback as the query progressed so the user knew MetaCrawler was

still working on the query, how much of it had accomplished, and how much was left.

58

Figure 4.1: MetaCrawler v1.0 Homepage screenshot, Jan. 1996.

This shows the user interface of MetaCrawler version 1.0. Visually,

there is a single text entry box, radio buttons whose options describe the

logic of the query (e.g. “All these words,” “As a phrase”), various options

describing what results are desirable (e.g. results from the user’s country,

.edu sites, etc), and various performance metrics (e.g. how long to wait).

59

Figure 4.2: MetaCrawler v1.5 Homepage screenshot, Aug. 1996.

The help text has mostly been removed in favor of a cleaner interface.

There are also various pointers to the Java Beta, at the time an exper-

imental interface that allowed users to browse results while MetaCrawler

continued to search. In addition, a new “Fast Search” button was added

to give users a better way to dictate the length of the search rather than

adjusting the “Max Wait” performance parameter.

60

We used Netscape’s server-push technology [75] to report how many results a Web

search engine had returned as soon as that information became available. However,

because most non-Netscape browsers do not implement server-push properly, if at all,

this feature is limited to Netscape users.

While reporting to the user which service had returned and with how many results

was useful, often one or two services would not return. As a result, MetaCrawler would

not display its results until the timeout for its search was reached. MetaCrawler’s

default timeout was thirty seconds, but was as high as three minutes if the user

requested MetaCrawler to download the results. This was often longer than users

wanted to wait. To address this problem, we created a Java interface that allowed

users to request the results that had already come in and browse those results while

MetaCrawler continued with the search.

The Java solution does have one serious drawback. The Java applet opened a

separate connection with the server for the applet to get status updates and for the

server to know when the user was finished with the search. Unfortunately, most fire-

walls do not allow these kinds of connections, and thus many users, mostly corporate,

could not take advantage of the Java solution.

4.1.3 Result page with click logging

In a format similar to other search services, MetaCrawler displays the document

references returned from the underlying Web search services on a single page in a

ranked relevance list. A ranked relevance list orders document references by their

confidence scores. A confidence score is just a number indicating how confident the

engine is that the document is relevant to the query. Confidence scores range from 0

to 1,000 with 1,000 representing the “most confident.” Each document is displayed

using the document title as a hyperlink to the document. Following the title is

the snippet of text describing the document returned by the source, with multiple

snippets if the document was returned by multiple sources. Following this information

61

is the confidence score, the actual URL of the document, and the list of services that

returned the document.

Logging capability is one of the key novel enhancements added to MetaCrawler.

Rather than just include a hyperlink to the document in the results, MetaCrawler

instead returned a hyperlink to a CGI program that logged various information about

the click and returned to the browser a redirect to the proper URL. The browser

then loaded the proper document automatically. This logging mechanism is key to

evaluating MetaCrawler as well as underlying search services, as it gives us some

information about how the information returned by MetaCrawler is used. We will

base a large portion of the evaluation in Chapter 5 on this logging information.

4.2 Data fusion algorithm

Once duplicate URLs are identified, MetaCrawler collates the results obtained from

the sundry search services into a single ranked list. This is often called data fusion

or just fusion in Information Retrieval literature. When MetaCrawler is instructed

to download the references returned by the search services, fusion is straightforward.

MetaCrawler assigns a confidence score to each document using one of two different

ranking methods. For queries using the “All these words” or “Any of these words”

logic, it uses a TF-IDF based ranking algorithm. TF-IDF stands for Term Frequency –

Inverse Document Frequency. This comprises a family of weighting originally studied

as part of the SMART project [89, 88] that score documents based on how many

query terms appear in that document and how often the query terms appear in other

documents. When using “Phrase” searching, MetaCrawler scores documents based on

how close the phrase appears in the document. The presence of extra terms or missing

terms is factored into the scoring. Once MetaCrawler has scored all documents using

a uniform function, it simply sorts all documents by their confidence scores.

MetaCrawler does not download documents to satisfy most queries. Therefore,

62

MetaCrawler must fuse the results using only the limited information available. There

are actually a number of techniques for fusion provided by the Information Retrieval

literature. Unfortunately, most rely on either known characteristics of the text corpus

or having information that makes fusion straightforward [7, 8].

4.2.1 Biased interleave methods

An obvious method one might use is to strictly interleave the results, ordering the

top-ranked result returned by each of the search services first, followed by all of the

second-ranked results, and so on. This method is ill-defined. For example, consider

the following three input sequences, A, B, and C, and three possible fusings, R1, R2,

and R3:

A = [a1, a2, a3]

B = [b1, b2, b3]

C = [c1, c2, c3]

⇒

[a1, b1, c1, a2, b2, c2, a3, b3, c3] (R1)

[b1, a1, c1, b2, a2, c2, b3, a3, c3] (R2)

[a1, b1, c1, c2, a2, b2, b3, c3, a3] (R3)

The difficulty is that there is no ordering between documents ranked equivalently

by different sources. One could select an arbitrary ordering based on some global

preference, such as R1, but that biases the results to the search services ordered

first which may not always be appropriate. One could also use a first-come first-

ranked ordering that incorporates the speed by which results were retrieved, such

as R2. However, that biases the results to whichever source returns the fastest, not

necessarily which returns the best results. One could also use a random ordering such

as R3, which will remove bias, but will likely produce inferior results.

One way of removing artificial bias is to somehow incorporate the confidence score

returned originally. This assumes two things: first, that all services return some kind

of confidence score, which is not true. The second is that the sundry search services

score pages in generally the same way. A problem with this is that often search

services rank several pages equivalently. This is especially problematic when the top

63

pages are all ranked with the search service’s top score. This has the affect of biasing

the results towards the search services that use scoring functions that rank many

pages equally.

A final issue which has not been addressed is how to incorporate information about

a single URL from multiple sources. One manner would be to rank a URL returned by

multiple sources in the average position, or take the average confidence score returned

by all sources. However, this assumes that confidence scores from two different search

services can be averaged. Also, it is unclear if giving a URL an average rank is what

the user desires. Certainly, if a URL is returned by two or more sources, then it is

much more likely to be relevant, and thus should be ordered somewhere above the

URLs returned by only one source.

4.2.2 Normalize-Distribute-Sum algorithm

In order to address the problem of biasing results towards a search service that

ranked a number of results equally, MetaCrawler uses a three stage algorithm called

Normalize-Distribute-Sum (NDS) to collate documents. The relevance scores from

each service are normalized to [0..1, 000]. The scores are then redistributed via the

following formula:

s′i =
N − hi + 1

N
∗ si (4.1)

where N is the number of documents returned by the service, hi is the rank of

document i, ranging from [1..N] with 1 being the top rank, and si being the original

relevance score of i given by the reference source. The redistribution is done to

prevent services that return multiple “perfectly” relevant results – i.e. many results

that all score 1,000 – from being listed before the results from other services. We then

sum the redistributed scores from duplicate entries, and then re-normalize the scores

to [0..1, 000] for end-user presentation, keeping with a style similar to other search

sites. One important, and intended, consequence of this algorithm is that references

64

returned by two or more sites tend to be ranked higher than references returned by

only one.

If we believed that each ranking algorithm is accurate or we knew that all services

used the same ranking algorithm, the distribution step would not be needed. In fact,

other fusion algorithms, such as those used to merge TREC results [21], would likely

perform much better than the NDS algorithm were this the case. We do not yet have

either a formal or experimental justification for this algorithm, but it does work well

in practice. Some comparison with other Web fusion algorithms [43, 47] as well as

ones used in the TREC environment is definitely warranted.

4.3 Heuristics for duplicate detection

When MetaCrawler is instructed to download documents, it is able to use many so-

phisticated methods to determine duplicates or near duplicates, such as the techniques

by Broder or Shivakumar [20, 99]. However, users usually preferred to receive results

quickly and did not have MetaCrawler download documents. Therefore, MetaCrawler

must use alternative means to detect duplicates. MetaCrawler uses two heuristics to

detect duplicate documents. The first, the Redirect Heuristic, is designed to detect

redirects, symbolic links, and other forms of referencing the same document within

the same domain. The second is the Mirror Heuristic which is designed to identify

identical documents located at different sites. Before we describe the heuristics, it is

necessary to review the components of a URL. A URL is comprised of five components:

the Protocol, the Hostname, the Port, the Path, and the Filename. The Hostname

can be broken down further into Machine Name, Sub-domain(s), and Domain. An

example is shown in Figure 4.3.

In every index of Web documents, a number of fields are kept concerning each

document. The URL used to access the document and the title of the document are

almost always two of those fields. While two different URLs may be used to access

65

http
︸ ︷︷ ︸

Protocol

:// www.cs.

Domain
︷ ︸︸ ︷

washington.edu
︸ ︷︷ ︸

Hostname

: 80
︸︷︷︸

Port

/homes/speed/
︸ ︷︷ ︸

Path

home.html
︸ ︷︷ ︸

Filename

Figure 4.3: The components of a URL.

A URL is comprised of five parts: the protocol, hostname, port, path,

and filename. The Hostname is comprised of the machine name, sub-

domain(s), and domain. In this example, www is the machine name, cs

the sub-domain, and washington.edu the domain.

the same document, the title of the document will be the same in both cases.

4.3.1 Default duplicate detection

Before any heuristic is involved, all URLs received by MetaCrawler are put into canon-

ical form. This involves inserting the default port identifier of 80 into the URL if one

is not already present, and appending “/index.html” if the URL does not specify a

file. For duplicate detection purposes only, file extensions of “.htm” are renamed

to “.html.” For example, the canonical form of http://www.washington.edu is

http://www.cs.washington.edu:80/index.html. One enhancement which is cur-

rently not used is mapping the hostname to the IP address. One could use this

technique to detect hostname aliasing, e.g. discovering that www.washington.edu

and www3.cac.washington.edu were equivalent. The reason this technique is not

used is that the resource requirements on the DNS service for translating these was

substantial and most duplicates of this nature were detected via the Redirect Heuris-

tic. Once URLs are put into canonical form, string comparison detects the obvious

duplicates.

66

4.3.2 Redirect Heuristic

Often, a document will be referenced multiple times on the same site. A common

case is a redirect, which is when the URL for a particular document changes and the

previous URL redirects the user to the new one. To determine if two URLs A and B

refer to the same document via a redirect, symlink, or other method, MetaCrawler

uses the following heuristic:

Redirect Heuristic:

IF A and B share the same filename, AND

A and B share the same non-empty title, AND

A and B share the same domain

THEN A and B refer to the same file.

The assumptions made by this heuristic are that any URL to a particular file

will use its actual filename, and that within a certain domain, the filename and title

are enough to designate a unique document. There are some notable exceptions to

this heuristic. In particular, while specifying a title is encouraged, titles are often

not specified. The occurrence of an “index.html” file, the default filename, without a

title is common enough that we added the requirement of non-empty titles. Another

issue with this heuristic is that generic or copied titles can be incorrectly assessed as

duplicates. Often, people create HTML pages from previous HTML pages or use a set

template, but neglect to change the title. However, practical experience has shown

that this does not often occur.

Tables 4.1 and 4.2 show two examples of how the Redirect Heuristic works. Table

1 shows three URLs, all of which refer to the same file. The Redirect Heuristic will

correctly identify URLs 1 and 2 as the same file; however, it will incorrectly classify

URL 3 as a distinct page. The reason why is made clearer in Table 4.2. Here, we have

67

three URLs, all of which refer three distinct documents in a mailing list archive. All

have the same title and path, and only differ in the filename. The Redirect Heuristic

correctly classifies all three documents as distinct documents.

4.3.3 Mirror Heuristic

Another common case of duplicates are mirrors. A mirror is a copy of a document

or set of documents on a different server. Typically, mirrors are used to provide fast

access time in geographically remote areas. MetaCrawler uses the following heuristic

to determine if two URLs A and B refer to mirrored copies of the same document:

Mirror Heuristic:

IF A and B share the same filename, AND

A and B share the same non-empty title, AND

A and B have different domains, AND

A and B share a non-trivial path suffix

THEN A and B refer to two copies of the same file.

Like the Redirect Heuristic, we use a combination of filename and non-empty title

to identify potentially equivalent documents. However, in the case of mirrored copies,

we are also able to assume that some portion of the path is equivalent. The full paths

of two mirrored documents are rarely equal. Sites often host multiple mirrors, and

thus each mirror is placed in a subdirectory under a common “mirrors” directory. It

is an open question as to how much of the path to use. MetaCrawler uses two-thirds

of the directories in the shortest path of candidate URLs. Again, this has proven to

work well in practice.

Table 4.3 shows three URLs, all of which refer to the same document mirrored

at three different locations. MetaCrawler first selects candidate mirrors based on

68

Table 4.1: Redirect Heuristic example 1.

URL Title

1. http://www.cs.uw.edu/homes/speed/home.html E’s Home Page

2. http://zhadum.cs.uw.edu/~speed/home.html E’s Home Page

3. http://bauhaus.cs.uw.edu/homes/selberg/index.html E’s Home Page

The Redirect Heuristic will determine URLs 1 and 2 refer to the same

file. Even though URL 3 also refers to the same file, it will not be consid-

ered a distinct URL.

Table 4.2: Redirect Heuristic example 2.

URL Title

1. http://info.wc.com/lst/rbots/0274.html Re: New Robot Announce

2. http://info.wc.com/lst/rbots/0275.html Re: New Robot Announce

3. http://info.wc.com/lst/rbots/0277.html Re: New Robot Announce

Three URLs from a mailing list archive. All three URLs refer to dis-

tinct documents, even though only their filename is different. The Redirect

Heuristic will classify all three as distinct documents.

69

Table 4.3: Mirror Heuristic example 1.

URL

http://www.acm.org/sigmod/dblp/db/indices/a-tree/s/Selb:E.html

http://sunsite.info.rwth-aachen.de/dblp/db/indices/a-tree/s/Selb:E.html

http://www.info.uni-trier.de/~ley/db/indices/a-tree/s/Selb:E.html

Three URLs referring to mirrored copies of the same document. The

Mirror Heuristic will classify all three as mirrors.

filename, title, and domain. It then selects two-thirds of the shortest candidate path,

which in this case would be /db/indices/a-tree/s/. The Mirror Heuristic would

then correctly classify all three URLs as mirrors.

4.4 Parallel I/O

A poor implementation of a meta-search engine would be to query each Web search

service serially, waiting for each search service to return its results before proceeding

to the next one. The lower bound on the time this approach would require is the sum

of the time required for each Web search service to return or timeout. If the requests

are made in parallel, then the lower bound on the time it takes to return results to

the user is just the time of the slowest Web search service to return or timeout. To

have actual performance approach that lower bound requires a sophisticated parallel

engine in order to keep overhead to a minimum and enable MetaCrawler to process

as much as it is able while waiting for services to return.

70

4.4.1 Naive process or thread-based approaches

One of the earliest Web libraries was lib::LWP(3), a Perl library for WWW access.

Because Perl also had a number of features that enabled ready parsing of pages, Perl

was a natural fit for constructing a meta-engine. SavvySearch [47], which predated

MetaCrawler’s public deployment by roughly a month, was implemented using Perl

and lib::LWP(3).

Unfortunately, Perl did not have an easy way to incorporate parallel I/O, so Savvy-

Search was implemented using a Perl process for each query submission, and a parent

Perl process that handled the distribution and collation. This method has two severe

drawbacks. The first is that each Perl process requires a large amount of system re-

sources. On a Sun UltraSparc 1, the platform originally used by SavvySearch, a Perl

process requires at least 1.7 metabytes of virtual memory to run. A meta-engine using

this paradigm for ten sources would require at least 17 metabytes of virtual memory

per query just for the Perl interpreter. This problem can be addressed by simply

adding virtual memory to a system. The second drawback is that most operating

systems have a hard limit on the number of processes per user. The POSIX limit is

64. For a meta-engine with 10 engines, this means there can be at most 6 simulta-

neous queries. This number is typically an adjustable constant. However, on most

operating systems adjusting this constant requires a recompilation of the operating

system kernel, a task many users may be unable to undertake.

An obvious solution to using an entire process to handle a query is to use a

multithreaded design, such as Java threads, where each query is handled by a sin-

gle thread. This approach reduces the amount of system resources a single query

consumes. MetaCrawler was initially implemented using pthreads(3) under DEC

OSF v3.2D on the Alpha platform. This worked well initially; unfortunately, when

functionality to download pages was added to MetaCrawler, the overall system per-

formance suffered greatly. In addition to using a thread for each Web search service

71

query, MetaCrawler also used a thread for each Web page it attempted to download.

Each machine hosting the MetaCrawler service processed between 5 and 15 queries

at a time during peak loads. Each query would attempt to retrieve between 10 and

150 documents. Thus, during peak loads, the various MetaCrawler processes could

request over 2,000 threads at once. Unfortunately, DEC OSF v3.2D had a default

limit of 256 threads per user. In addition to causing queries to wait in order for

resources to become available, new queries were unable to start, which caused many

users to receive “Service Unavailable” errors when they attempted to execute their

search.

While it was possible to increase the user thread limit, it was still a hard limit

which may have been reached under load. In addition, the DEC OSF v3.2D kernel

would crash routinely if over 1,500 threads were created. Another approach to address

the thread limit problem would have been to use a system similar to Chores [33]

which limits the number of threads any process could use, and queues the requests

if there are not enough threads available. However, we were experiencing substantial

growth in the number of queries being submitted daily, and eventually either solution

would likely hit the thread limit. Furthermore, the pthreads(3) libraries were not

universally available across multiple platforms at the time, especially on Linux, which

necessitated exploring an alternative approach.

4.4.2 Event-based paradigm

Our only use for multiple threads in MetaCrawler was to implement parallel I/O.

Therefore, the question arises: Is there a way to implement parallel I/O without

threads? The answer to this question is, “Yes” and the means to this end is via the

select(2) system call. However, before we delve into the details of this implemen-

tation, it is necessary to examine how the HTTP protocol works.

Retrieving a document from the Web via the HTTP protocol can be represented

by a Finite State Machine (FSM). Figure 4.4 shows a simple HTTP FSM. As shown,

72

Connect
www.foo.com

Send
GET /index.html

Receive
<data>

Close

Figure 4.4: FSM for a general HTTP connection.

A FSM for the most simple HTTP session. A connection is opened to

a HTTP server, a request for a document is sent to that server, the data

is received, and the connection is closed. Notice the self-referential arrows

from the Send and Receive states; this is because it may take multiple send

and receive calls to transmit all the data.

73

a connection is opened to the HTTP server, in this example www.foo.com. Then, a

request is sent, in this case GET /index.html which retrieves the site’s default Web

page. While the data sent in this example is trivially small, typically more data is

sent in compliance with the HTTP/1.1 protocol [48]. Due to I/O buffering limits in

the operating system, all of the data may not be sent at once, and thus must be sent

in smaller segments. The data is then received. Again, due to I/O buffering and

potential latency, the data may not be received all at once but in several segments,

and thus each segment must be read in turn. The connection is then closed. While

the HTTP/1.1 protocol does include a framework for multiple requests being satisfied

over the same connection, this functionality was not used in MetaCrawler and will

not be described here, although it is not difficult to extend the FSM to include this

functionality.

Typically, HTTP libraries use blocking send and receive calls. When used, these

calls block the program from doing anything else until some data is either sent or

received. In addition to the delay that may come with network latency, the operating

system may add some delay due to its own resource management. When parallelism

is accomplished via multiple processes or threads, the underlying HTTP library uses

these blocking calls. Both the Perl and Java libraries are written in this fashion.

The alternative to using blocking calls for sending and receiving data is to use non-

blocking calls. Non-blocking send and receive calls either send or receive as much

data as possible at the instant they are called, and then return control back to the

program.

One way of implementing parallel HTTP requests using non-blocking calls is to

have a list of FSMs, as depicted in Figure 4.5. The program iterates over the list,

causing each FSM to undergo a single state transition until all FSMs reach the Close

state. When there are many connections, unnecessary delay can occur as the program

iterates over each FSM to find those that are able to actually send or receive data.

Most send and receive implementations require some system utilization when they

74

C S R C

C S R C

C S R C

C S R C

C S R Cn

0

1

2

3

Figure 4.5: FSM network for general HTTP connections.

A network of HTTP Finite State Machines, used to implement parallel

Web requests. Each request is realized by its own FSM. The program iter-

ates over this network, causing state transitions in FSMs. When a FSM

reaches the Close state (C), the data has been received or an error state

has been reached, and the resources can be reclaimed by the program for

another connection. The only inherent limit to this design is the num-

ber of open connections in a single process, which is typically 4,093 for

UNIX-based systems.

75

are called, even when no data is available. Thus, it is wasteful to issue these calls

when no data is available.

There is an OS call that informs the calling program when there is data avail-

able for send and receive calls: the select(2) call. The select(2) call accepts as

input descriptors to connections that have I/O events pending, and returns the de-

scriptors that have I/O events ready to be processed. Colloquially, programs that

use select(2) to multiplex I/O are described as “event-based” systems. In order

to multiplex HTTP connections as in Figure 4.5, there needs to be a mapping be-

tween descriptors and FSMs. Descriptors in UNIX are simple integers, and thus an

array using descriptors as the index value is appropriate data structure to use for this

mapping.

4.4.3 Event-based paradigm with DNS

One of the deficiencies with the event-based model is that it is not pre-emptive, mean-

ing that the processing of any one state transition will not be interrupted, regardless of

how long it takes. In particular, the starting Connect state can be quite problematic

in this model. Remote sites are typically described using alpha-numeric names, such

as www.cs.washington.edu. In order to make a connection, these names must be

translated into Internet IP addresses. For example, www.cs.washington.edu would

be translated into 129.95.4.112. The service that provides this translation is the

Domain Name Service, or DNS. Most operating systems have a call which, given a

host name, automatically contacts the DNS to perform the translation; in UNIX, the

call is gethostbyname(3N).

The gethostbyname(3N) is a blocking call. Normally it returns rapidly, so there

is not an issue. However, under heavy load, the DNS daemon that provides the

translation can become loaded, and thus the gethostbyname(3N) call may block

the process for a significant amount of time. The default timeout is five minutes.

Because the event-based system is not pre-emptive, no work can be done until the

76

gethostbyname(3N) call finishes. This may cause the unwanted timeout of other

connections that are otherwise operating correctly.

DNS servers can be accessed using send and receive calls in a similar way to HTTP

servers. Therefore, the HTTP FSM model can be extended to include a non-blocking

DNS call. This extended FSM is described in Figure 4.6.

Because opening and closing connections to the DNS server is resource intensive,

it is advantageous to open only one connection to the DNS server per query and have

each HTTP connection use that global connection. This does serialize DNS requests;

however, requests that are already connected to remote servers are able to continue

unimpeded. This approach has worked well for MetaCrawler practically.

4.4.4 Handling other protocols

One of the features of MetaCrawler was the ability to download the pages contained

within the search results to provide extra functionality. While most of the results

were pointers to documents available via HTTP servers, a number of them used other

protocols: FTP, WAIS, and Gopher being the most common. While these protocols

were somewhat more complex to implement than HTTP, it was still straightforward

to implement FSMs to realize the retrieval of a remote document. In addition, at

the time MetaCrawler was developed the HTTP protocol was undergoing significant

change as well. The FSM for HTTP was enhanced with most of the HTTP additions,

including the ability to handle redirects and the various supported authentication

methods seamlessly.

4.4.5 Evaluation of event-based paradigm

It is difficult to evaluate the performance of the event-based paradigm compared to

using threads or processes. Certainly one method would be to run a benchmark that

attempted to retrieve a certain number of documents available remotely using all

three methods. However, this introduces network latency, which may severely inhibit

77

Connect
123.1.2.3

Send
GET /index.html

Receive
<data>

Close
www.foo.com

Connect
DNS

Send
www.foo.com

Receive
123.1.2.3

Close
DNS

Figure 4.6: FSM for HTTP with DNS.

A Finite State Machine, expanding the Open state from Figure 4.4 to

include states for a non-blocking call to the DNS service.

78

accurate measurement. Instead, we conducted two experiments. In the first experi-

ment we examined what the overhead is for processes and threads, and whether that

overhead increases as the number of threads and processes increase. In the second

experiment we measured how many simultaneous processes, threads, and open con-

nections were attainable. Both experiments were conducted on Digital AlphaStation

500/333, running at 333Mhz with 290M of main memory and an additional 670M of

virtual memory, using the DEC OSF v3.2D kernel. The kernel had been recompiled to

handle a maximum of 2,068 simultaneous processes and 4,136 simultaneous threads.

Benchmark Results

We measured the overhead of using multiple processes or threads. Presumably, if the

overhead is simply a constant factor, then while multiple processes or threads may

be slightly slower, they should not limit the number of queries. We measured the

overhead by running a benchmark serially for N iterations, and then compared it to

using N processes or N threads. To determine if the overhead remained constant or

increased, we measured the overhead using N of 100 to 2,000 in increments of 100.

We used two benchmarks. The first was a simple busywait loop. The second opened

a file, wrote 10K of random data to the file, closed the file, and deleted the file. The

second benchmark was used to simulate the I/O dependent nature of MetaCrawler,

and files were used instead of Web pages to remove any potential network latency.

Figure 4.7 shows the results for the busywait benchmark taking the average time to

complete a busywait loop serially, using threads, or using processes. As shown, while

there is some overhead, the overhead remains constant for threads. There is some

volatility in the overhead of multiple processes, but this does not appear to be tied to

the number of processes. Figure 4.8 paints a slightly different picture. It shows that

the overhead for processes does in fact increase as the number of processes increases.

On the other hand, the overhead for threads does not appear to increase with the

number of threads. However, it is worth noting that the overhead is substantially

79

larger – almost 200% – than the overhead in using the busywait benchmark. While

conducting this evaluation, we observed that we were not able to generate over 600

simultaneous processes nor over 1,100 simultaneous threads. After the benchmark

program reached those limits, it refrained from creating a new process or thread until

an existing one had completed its task. This in effect serialized the program after a

certain number of processes and threads had been reached. We were also unable to

generate results for 1,600 or more simultaneous processes. Even with the serialization

when system resources became unavailable, the operating system halted after creating

between 1,500 and 1,600 processes in short succession from a single program.

Maximum open simultaneous connection

While it appeared that the overhead for threads was constant, we observed that the

number of simultaneous processes and threads we were able to generate was much

less than the system’s advertised maximum. Therefore, we attempted to see how

many simultaneous threads and simultaneous processes we were able to attain. In

addition, we attempted to determine how many simultaneous connections we were

able to make. Table 4.4 shows our findings.

We were only able to spawn at most 509 processes on the AlphaStation before

running out of system resources. We were able to create 1,027 threads, a little over

double our maximum number of processes, before we ran out of system resources. We

were able to run 24 simultaneous processes each of which opened 4,093 connections

without difficulty.

Although it does not appear that the overhead of threads is significantly affected

by the number of threads in a system, there is a fixed limit as to how many threads

are available. Since MetaCrawler required more than 1,027 simultaneous connections

during peak access hours, neither multiple processes nor multiple threads were an

option on the given hardware.

80

Busywait Benchmark

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 500 1000 1500 2000 2500

Iterations

A
ve

 M
ic

ro
se

co
nd

s

Serial Threads Processes

Figure 4.7: Overhead of threads and processes for busywait benchmark.

As shown, the overhead of threads was neither significant nor did it

increase as the number of threads increased. The overhead of processes

was noticeable and somewhat more volatile, but did not appear to be tied

to the number of processes. 1,600 or more multiple processes were not

evaluated due to system limitations.

81

File I/O Benchmark

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500 1000 1500 2000 2500

Files

A
ve

. M
ic

ro
se

co
nd

s

Serial Threads Processes

Figure 4.8: Overhead of threads and processes for file I/O benchmark.

The overhead of multiple processes was both significant as well as in-

creasing with the number of processes. The overhead of threads was also

significant, but did not increase with the number of threads. 1,600 or more

multiple processes were not evaluated due to system limitations.

82

Table 4.4: Default, adjusted, and actual maximum number of processes, threads, and
open connections.

Processes Threads Connections

Default 64 256 31,744

Adjusted 2,068 4,136 31,744

Actual 509 1,027 4,093

This table shows the default number of simultaneous processes, threads,

and open connections, the maximum on an adjusted DEC OSF v3.2D ker-

nel, and the actual number attained before reaching resource limitations.

While the number of processes and threads depict the maximum number

for the entire system, the number of open connections is per process. We

were successfully able to achieve 98,232 open connections across 24 pro-

cesses. Note that these connections were not connected to an available

port, of which there are only 31,744 available (32,768 total, with the first

1,024 reserved for the operating system). These tests were conducted on

an AlphaStation 500/333, running at 333Mhz with 290M of main memory

and an additional 670M of virtual memory.

83

4.4.6 Results of event-based model

MetaCrawler has used the event-based I/O model with great success. Originally

based on the World Wide Web Consortium’s libwww v4.0d C library, written by Hen-

rik Frystyk Neilsen [73], MetaCrawler’s event-based I/O library enabled MetaCrawler

to handle in excess of 100 queries at a single time on a single processor. Certainly,

there are further improvements that can be made. In particular, an improved im-

plementation of the select(2) call, available in more recent versions of DEC OSF,

could enhance things dramatically [5].

In addition to the performance improvements, the event-based model used calls

that were standard in all POSIX-compliant variants of UNIX. Thus porting the Meta-

Crawler code to other POSIX-compliant platforms, in particular Linux, was a trivial

matter. At the time MetaCrawler was first created Linux did not have a standard

threads package. Therefore porting a threads-based MetaCrawler would have neces-

sitated creating our own threads package or using a non-standard threads package.

4.5 Further extensions to MetaCrawler

In addition to MetaCrawler’s architecture allowing for a plethora of small-scale en-

hancements and improvements, it also allows for some larger-scale extensions. We

describe two such applications built on MetaCrawler: Ahoy! The HomePage Finder

[96] and HuskySearch [93].

4.5.1 Ahoy! The HomePage Finder

A known item search is a search for a single piece of information that is known to

exist. Optimally, the user will receive only a single result which contains the proper

information. The difficulty in handling known item searches is that it is often difficult

to properly express the information, thus users typically use an underspecified query

and sift through the results for the proper item. One of the most common complaints

84

in user feedback of MetaCrawler is the number of irrelevant results that is returned.

One domain that demonstrates this problem is a query for a person’s home page.

Jonathan Shakes, Marc Langheinrich, and Oren Etzioni developed the Ahoy! service

as a specialized search service designed to find individual’s home pages. Users entered

a first and last name, and optionally an organization, e-mail address, and country.

Ahoy! then formatted a query for MetaCrawler. Ahoy! uses a specialized Search

Client in MetaCrawler that is designed to output the raw results, rather than the

formatted results. In addition to querying MetaCrawler, Ahoy! queried various e-

mail indices with the person’s name in order to discern the person’s e-mail address

if it was not provided by the user. Ahoy! then used the e-mail address as part of a

suite of heuristics to extract home pages from MetaCrawler’s output. For its output,

Ahoy! would return only pages that met its strict criteria resulting in a typical result

of only one or two URLs.

To evaluate Ahoy, Shakes, Langheinrich, and Etzioni compared the performance of

Ahoy! to that of submitting just the name of the desired user to MetaCrawler, HotBot,

AltaVista, and Yahoo!. Two home page lists available on the Web were chosen: David

Aha’s list of Machine Learning and Case-Based Reasoning Home Pages [1], a list of

582 home pages, and the netAddress Book of Transportation Professionals [107], a

list of 53 home pages. These were respectively referred to as the Researchers Sample

and the Transportation Sample. The desired users’ names were submitted as queries

to MetaCrawler, HotBot, AltaVista, and Yahoo!. At the time of the experiment,

HotBot, AltaVista, and Yahoo! all had special syntax for names, whereas MetaCrawler

did not. Instead, MetaCrawler used phrase searching when forwarding queries to

HotBot, AltaVista, and Yahoo!. Thus the direct query to the three search services

could produce better results than the results that are returned from MetaCrawler’s

query to those services.

The experiments measured whether the home pages were returned and if they were

returned as the top ranked document. The results, summarized in Table 4.5, show that

85

Table 4.5: Top ranked and found percentages for Ahoy! evaluation.

Researchers Sample

Top Ranked Found

Ahoy! 74.38% 84.57%

MetaCrawler 22.22% 75.62%

HotBot 26.85% 64.20%

AltaVista 22.53% 58.02%

Yahoo! 0.62% 0.93%

Transportation Sample

Top Ranked Found

Ahoy! 65.38% 67.31%

MetaCrawler 19.23% 65.38%

HotBot 11.54% 42.31%

AltaVista 19.23% 34.62%

Yahoo! 9.62% 11.54%

Ahoy! used two sets of Home Pages: A 582 entry Researchers Sample,

comprised of academic and industrial researchers, and a 53 entry Trans-

portation Sample of transportation professionals. Both were independently

created sets. As shown, Ahoy is able to achieve significant improvement

in both ranking accuracy as well as retrieval. MetaCrawler is also able

to retrieve more home pages than the other Web search services, showing

that meta-search in this domain is advantageous.

in this domain Ahoy! was able to retrieve more home pages than any other service as

well as returning them as the top ranked result significantly more often than any other

service. The results are also favorable to MetaCrawler, showing that MetaCrawler is

second best at retrieving the appropriate home pages. MetaCrawler is also comparable

to the rest in terms of ranking the appropriate home pages first, even considering

MetaCrawler was using sub-optimal syntax. This demonstrates that extensions to

MetaCrawler can lead to significant improvements, and that these improvements are

above and beyond improvements made by MetaCrawler to base services.

86

4.5.2 HuskySearch

Based on our experience with MetaCrawler and our desire to highlight research en-

hancements, we implemented MetaCrawler version 2.0. Due to contractual issues

relating to the commercial operation of MetaCrawler, MetaCrawler version 2.0 was

renamed HuskySearch in January 1997.

User interface enhancements

A number of enhancements were made to the User Interface based on feedback from

users. Experienced users frequently changed options after every query. To make

their experience less tedious, we enhanced the search form so that the query options

from the previous query were already selected and the text of the previous query

was already entered. HuskySearch was also enhanced to provide superior searching

for University of Washington faculty, staff, and students. In addition to searching

global Web indices, options were added to allow the user to search local University of

Washington intranet indices as well as The Daily, the local student newspaper [106].

Previous implementations of the Java version used two different search forms.

This was confusing to users, so the two forms were merged and an option was added

that selected the output format. With the persistent query option enhancement de-

scribed above, users only needed to choose once for a peculiar output format for any

number of queries. Users were often unclear when documents would be downloaded.

The MetaCrawler version 1.0 would only download documents if the user requested

phrase searching. Once more services began supporting phrase searching, we made

downloading documents an option for all logics. However, this option conflicted with

the “Maximum Wait” option. Users could request MetaCrawler to download docu-

ments, and return results in 15 seconds. This was not possible in practice. Therefore,

we merged the document download option and the maximum wait option into three

submit buttons: “Fast Search,” which returned whatever results were available within

87

5 seconds, “Default Search,” which returned results within 30 seconds, and “Quality

Search,” which downloaded the documents and returned results within 3 minutes.

A number of users requested various advanced features. While adding these was

not difficult, we were unable to develop a search form that accommodated both ad-

vanced as well as novice users. Therefore, we created a “Power Users” page that

contained all of the performance parameters, URL filtering options, and other miscel-

laneous options previously unavailable. We then removed the advanced options from

the default search page. Figure 4.9 shows the current search form for HuskySearch.

Engine enhancements

In addition to enhancements made to the User Interface, we made several significant

enhancements to the underlying engine. The first, which will be described in further

detail in Chapter 6, was the addition of a URL statistics database. This database

keeps count of how many times a URL is returned and how many times it is viewed

by a user. HuskySearch adjusts a URL’s ranking based on this data.

Another enhancement is the addition of two new query options: “Search for a

Person” and “Reverse URL Search.” Many of the underlying services HuskySearch

used had added a “Person” query syntax, and our own informal log analysis showed

a substantial amount of queries appeared to contain proper names. Another query

option gaining in popularity is the “Reverse URL Search,” in which the query is a

URL, and the results are pages that have a hyperlink to that URL.

The addition of these two query logics to the user interface was trivial; the three

radio buttons that represented the query logic were replaced by a single menu. Adding

the functionality to the wrappers whose services did not provide the appropriate logic

was also trivial. We enhanced the wrappers of these services with approximations of

the logic and added filters to ensure quality results. For example, the approximation

for the “Person” logic for services that did not support it was to submit the query

(‘‘First Last’’ OR ‘‘Last, First’’).

88

Figure 4.9: HuskySearch Homepage screenshot, Aug. 1999.

Some of the options added to HuskySearch were not obvious to naive

users. Therefore, brief help that explained the options available were in-

cluded.

89

However, enhancing the wrappers of services that did natively support the query

logics, while straightforward, was quite tedious. Each wrapper had to be enhanced to

support the new syntax in the service’s native format. It is unclear if there is a solution

to the problem of recoding wrappers to add additional query options. However, as

the number of search services increases and search services get more sophisticated

and complicated, even solutions that lessen the manual coding requirements will be

of great benefit.

4.6 Summary

To summarize this chapter, we have described our implementation of MetaCrawler.

We have shown that average Web users can take advantage of comprehensive search

through a clean Web interface. A problem with combining results from different search

services is that the results may be biased in some fashion. We have presented the

Normalize-Distribute-Sum algorithm that collates results from heterogeneous search

services that takes into account the potential biases of various services. Another

problem with combining the results from different services is that the same URL may

be described in different ways. We have presented the Redirect Heuristic and Mirror

Heuristic that classify common cases of duplication from redirects and mirroring.

Parallel retrieval of Web pages consumes a significant amount of system resources.

We have shown how the event-based paradigm enables an application to download over

four thousand pages at once, compared to the common alternative of threads which

allows for slightly over a thousand simultaneous retrievals. Finally, we have presented

two applications that build on MetaCrawler: Ahoy! and HuskySearch, which imple-

ment various features requested by users such as known item searching, persistent

options, and query logic for locating people.

Now that we have fully described the MetaCrawler system, we turn to the evalu-

ation of MetaCrawler and of its underlying search services.

90

Chapter 5

EMPIRICAL EVALUATION

The previous chapters described the general architecture of MetaCrawler and de-

tailed some of its technical aspects. In this chapter we will explore its evaluation,

focusing on these key questions relating to MetaCrawler:

• Contemporary Web search services such as AltaVista and Excite are supported

by copious resources. For example, the AltaVista Query Engine is powered by

more than sixteen Alpha Server 8400 5/440s, each with twelve 440Mhz Alpha

processors, 8Gb of main memory, and 300Gb of disk storage [24]. The query

interface, spider, and indexer operate on additional hardware. With these re-

sources powering a single search service, is meta-search really necessary in order

to obtain a comprehensive search of the Web?

• If no single search service provides a comprehensive search, what is the advan-

tage of combining multiple search services? Do all search services contribute a

substantial amount of information, or are the main advantages of meta-search

provided by combining only a few select services?

• Even if search services do not provide a comprehensive search of the Web today,

they may eventually be able to. Given the current rate of growth of the Web

and of the search services, will an individual search service eventually be able

to provide a comprehensive search of the Web?

• While the Web is a dynamic entity, many of the documents contained within it

are static. A reasonable assumption regarding the Web is that if a document

91

can be found through a search service, and if it does not change, then it can be

found through that search service again. Is this assumption accurate?

5.1 Comprehensiveness of Web search services

We claim that MetaCrawler provides a significantly more comprehensive search of the

Web than any single search service. To substantiate our claim, we show that each

search service MetaCrawler uses provides a substantial number of relevant results

to user queries. We show this by analyzing data obtained through the public use

of MetaCrawler. We first observe that the results of the search services are largely

unique. We then show that users follow results returned from all of the search services,

indicating that all of the services are returning useful results. Finally we detail the

actual contributions of each search service in turn.

A more direct method of determining whether MetaCrawler provides a more com-

prehensive search than any individual search service is to compare the number of

documents indexed by the search services to the total number of documents on the

Web. While the search services publish the number of documents they index, there is

no direct method of counting the number of documents on the Web. Even comparing

the size of search service indices to estimates of the size of the Web provides only

limited insight into the potential contribution of MetaCrawler. Figure 5.1 shows a

possible arrangements of four search service indices covering portions of the Web, A,

B, C, and D. While comparing the size of the indices to the size of the Web might

indicate that combining the indices would be of great benefit, because indices A, C,

and D largely overlap index B, combining the results would have little benefit. Thus,

we need to evaluate the overlap among search services in order to determine what the

benefit of combining them truly is. Since we are unable to examine the indices of the

search services directly, we determine the overlap between search services based on

the search results from user queries.

92

A C

B D

Web

Figure 5.1: An example of search service overlap.

This Venn diagram illustrates a problem in determining the benefit of

combining search services by comparing the sizes of their indices. If the

indices are largely overlapping, then there will be little benefit to combining

them.

A potential problem with using results from user queries to determine overlap

between two search services’ indices is that the way the search services match docu-

ments may adversely bias the findings. As an extreme example, consider two search

services that use the same index. One search service attempts to return the most

relevant documents to a given query, the other returns a random selection of docu-

ments. Based on the overlap between the results, it would seem that the two search

services had indexed different documents, and thus combining the two would provide

substantial benefit. However, based on the relevant documents returned, combining

93

the two search services would only increase the number of irrelevant documents in

the final results. Thus, it is necessary to not only analyze the number of overlap-

ping documents between search services, but also the number of overlapping relevant

documents.

Unfortunately, determining which documents on the Web are relevant to a query

is impractical since there is no direct way of obtaining all relevant documents without

using the tools we are evaluating. Another way to address this problem is to assume

all relevant documents were returned through one or more search results. Human

assessors can then manually evaluate the results and form the set of relevant results.

This is known as the pooling method [101], but this approach is extremely labor

intensive. For example, human assessors had to evaluate an average of 1,326 out of a

possible 3,100 documents for 50 queries in the TREC-6 ad hoc query track [110], for

a rough total of 66,300 documents. Assuming it takes one minute for an assessor to

read and evaluate a single document, and assuming that only one assessor evaluates

each document, then it will take 1,105 hours to evaluate all 66,300 documents, or 138

8-hour days for a single person. A common complaint in the TREC series is that 50

queries is not enough to fully evaluate any search engine [110]. Therefore, even 1,105

hours may not be enough to evaluate the documents required for a significant study.

5.1.1 Inference of User Value through Real-world Data

Although there is no standard set of Web queries where all available relevant docu-

ments are known, there are millions of users issuing queries to Web search services

every day. Therefore, we will use a new methodology to measure the performance

of the search services called Inference of User Value through Real-world Data. Using

real-world data, we will infer the value to the user provided by a search service. This

methodology requires both a significant number of queries as well as some measurable

quantity by which we can infer value.

To obtain a significant number of queries, we deployed MetaCrawler to the public

94

in June 1995. Our goal was to have users search the Web using MetaCrawler. After a

significant number of users issued queries to MetaCrawler, the information concerning

each query could be analyzed. Users will only use a search service if it provides them

with some tangible benefit. Therefore, to obtain enough user queries to perform

meaningful experiments, it was necessary to make MetaCrawler a high-performance

service.

Measuring value through user clicks

While the Web provides an attractive medium for obtaining a large number of user

queries, it does not provide any inherent mechanism to measure how many results

of a search are relevant to the user. Most search services return a list of document

references in response to a given query. The document references contain hyperlinks

which lead directly to the appropriate document. When a user clicks on a hyperlink,

the user’s Web browser contacts the server that provides the referenced page and

retrieves the page. Note that the search service that returned the document reference

is not contacted during this process, and therefore does not know if a user followed

none, one, or all of the results returned.

The most direct method to determine the relevance of a document is to ask the

user. However, users are often unwilling to fully evaluate the results of a search.

Another method to determine which documents are relevant is to observe which doc-

uments the user chooses to view.

As mentioned in Section 4.1.3, the document references which MetaCrawler re-

turns do not contain hyperlinks that lead directly to the referenced documents. In-

stead, the hyperlinks lead to a program at the MetaCrawler site. This program logs

pertinent information about the document being viewed, such as what query it is

associated with, its ranking, the time it was followed, and so on. The program then

redirects the user’s browser to the proper document. Redirects are handled seamlessly

by most browsers; therefore, users are not affected by the logging except for a slight

95

delay caused by following the redirect.

We are able to determine documents of interest by logging the resulting links

that are followed. Documents of interest indicate whether or not a search service is

returning useful information. Thus, we will infer user value from user clicks on the

references returned by a search service.

Viewed documents as an upper bound

We do not make the claim that following a hyperlink implies that the referenced

document is relevant. The document viewed may have looked relevant at first glance,

but turned out to be irrelevant. The document may have been irrelevant to the query,

but was interesting to the user for some other reason. The document may have been

irrelevant by itself, but hyperlinks from that document may have lead to relevant

documents.

However, we do know that the documents that are not viewed are, for all practical

purposes, irrelevant. Therefore, the number of viewed documents is an upper bound

on the number of relevant documents returned for a given query. We use it as such

for the remainder of the thesis.

5.1.2 The 1995 search service evaluation

For our first evaluation of Web search services we observed 20,906 queries from Novem-

ber 26 through December 2, 1995. The first hypothesis we tested was that no single

search service provided a comprehensive search of the Web. To satisfy this hypothesis,

we calculated the Unique Document Percentage, UDP , for each Web search service

MetaCrawler used. Let Ds be the set of documents returned by search service s.

Note that Ds is dependent on how many documents are requested from search service

s, not how many documents are available. The Unique Document Percentage for a

search service is the percentage of document references returned exclusively by that

search service, defined by the following equation:

96

UDP s =

∣
∣
∣Ds −

⋃

i6=s Di

∣
∣
∣

|Ds|
(5.1)

Unique documents were calculated using the heuristics described in Section 4.3.

At the time of the experiment, MetaCrawler used Excite [37], Galaxy [35], InfoSeek

[49], Inktomi [51], Lycos [69], Open Text [77], WebCrawler [80], and Yahoo! [40]. All

of these services except Yahoo! use spider-based indices. Yahoo! uses a manually-

generated directory.

MetaCrawler requested ten documents from each service, which at the time was

the default number of documents returned by a Web search service. Although some

search services were able to return more than ten documents on a given query, each

search service s contributed at most ten documents to Ds for a given query.

Figure 5.2 shows the UDP for the nine search services MetaCrawler used. In

eight of the search services used, over 88% of the documents returned by each service

were returned exclusively by that service. It is surprising that Yahoo! did not have a

much lower UDP . Because Yahoo! is a directory, spiders are able to gather all of the

documents available from Yahoo!. At the time these experiments were run, many of

the search services used the Yahoo! directory as the initial seed for their spiders, and

thus should have had all documents available through Yahoo!.

Even though the results returned by the search services are disjoint, it is unclear

whether the services are returning relevant information. In order to make this deter-

mination we calculated the Viewed Document Share, VDS , for each search service.

Let Vs be the set of viewed documents from search service s. The Viewed Document

Share is calculated by the following equation:

VDS s =
|Vs|

|
⋃

i Vi|
(5.2)

The VDS of a search service measures the percentage of viewed documents that

the search service provided. A viewed document is a document that the user sees

97

97% 98%

88%

99% 95% 97% 93%

78%

0%

20%

40%

60%

80%

100%

Exc
ite

Gala
xy

Inf
oS

ee
k

Ink
tom

i

Ly
co

s

Ope
n T

ex
t

W
eb

Cra
wler

Yah
oo

U
ni

qu
e

D
oc

um
en

t P
er

ce
nt

ag
e

Figure 5.2: Unique Document Percentage, 1995.

This chart shows the Unique Document Percentage for each service.

The percentage is calculated by dividing the number of documents returned

exclusively from a service by the number of documents returned from that

service. These figures are derived from analysis of 20,906 queries from

November 26 through December 2, 1995. Ten documents were requested

from each service. As shown, over 90% of the documents in all but two

services were returned by only a single service.

98

by clicking on a hyperlink, as described in Section 5.1.1. Documents returned by

two or more services are counted for each service. Figure 5.3 shows the VDS for the

nine search services. Clearly, no service returns a majority of the documents that are

viewed. Since the search services all return a large percentage of unique documents,

and all search services return documents that users find of interest, clearly none these

services is solely able to provide a comprehensive search of the Web.

Implications of only requesting ten documents per service

Because we only compared the top ten results for each query, it is possible that

some service provided a comprehensive search, but that its ranking algorithm did

not rank the appropriate documents high enough. Therefore, if all of the documents

were requested, the results may be different. Unfortunately, requesting all available

documents for the 20,906 queries would put an undue burden on the search services.

To determine if a search service indexed a followed reference but ranked it lower than

ten, we selected a sample of followed references that were returned by other search

services. We then submitted the query that returned the original reference to the

search service in question and obtained all of the available results. We then scanned

those results for the reference that was followed.

Due to difficulties obtaining more than ten results from most of the services, we

were only able to complete the test for Lycos. However, as shown in Figure 5.3, Lycos

would be the most likely candidate for providing a comprehensive search. We collected

a sample of 250 followed references that were not returned by Lycos. Each reference

was the only followed reference in the corresponding query results. After issuing the

queries that generated the followed references to Lycos, we found 36 references out

of the 250, or 14.4%. Therefore, while there may be more overlap if more documents

were requested, it would not change the overall conclusion that no search service could

provide a comprehensive search.

99

19%

4%

9%

19%

23%

14%
17%

5%

0%

5%

10%

15%

20%

25%

30%

35%

Exc
ite

Gala
xy

Inf
oS

ee
k

Ink
tom

i

Ly
co

s

Ope
n T

ex
t

W
eb

Cra
wler

Yah
oo

V
ie

w
ed

 D
oc

um
en

t S
ha

re

Figure 5.3: Viewed Document Share, 1995.

This chart shows the Viewed Document Share, VDS, of each service.

VDS is the number of viewed documents returned by a service divided by

the total number of viewed documents. As shown, no service returns a

majority of viewed documents, thus no search service provides a compre-

hensive search of the Web.

100

5.1.3 The 1999 search service evaluation

While the 1995 findings indicate that no search service provided a comprehensive

index of the Web in 1995, it was not clear that this was still the case over three years

later. Therefore, we conducted a followup study that analyzed 224,195 queries issued

from January 1, 1999 through April 30, 1999. This study used our HuskySearch ser-

vice, which is a more advanced version of MetaCrawler. We were unable to collect

results from Galaxy, Open Text, and InfoSeek. Open Text ceased operation in 1996,

and Galaxy and InfoSeek requested that HuskySearch refrain from querying its ser-

vice in 1997. However, we did collect results from three search services that emerged

after our 1995 experiment: AltaVista [30], Google [45], and PlanetSearch [82]. In

1996 the public Inktomi search service became the HotBot search service, although

the underlying engine was still provided by Inktomi, Inc. Inktomi also provides the

backend search service for Yahoo!. Our figures for Inktomi reflect those of the HotBot

service; the graph labels are unchanged for clarity. Instead of requesting ten docu-

ments from each service as in 1995 study, HuskySearch requested thirty. The results

of our findings are presented in Figures 5.4 and 5.5.

As shown, the UDP for all of the services evaluated in 1999 is above 80%. Fur-

thermore, while AltaVista returned the most viewed documents, it returned under a

third of all documents that were viewed. Clearly, none of these services were able to

provide a comprehensive Web search.

Even though the search services HuskySearch uses do not provide a comprehensive

search, it is unclear how advantageous it is to combine them. In particular, it is

unclear if the benefit of combining the eight search services could also be obtained

by combining seven or fewer. To determine the contribution of each search service in

providing documents, we define the Cumulative Document Percentage, CDP . Let π

be a permutation of n search services such that πs ∈ [0 . . . n − 1] and for all search

101

0%

20%

40%

60%

80%

100%

Exc
ite

Gala
xy

Inf
oS

ee
k

Ink
tom

i

Ly
co

s

Ope
n T

ex
t

W
eb

Cra
wler

Yah
oo

Alta
Vist

a

Goo
gle

Plan
etS

ea
rch

U
ni

qu
e

D
oc

um
en

t P
er

ce
nt

ag
e

UDP 1995 UDP 1999

Figure 5.4: Unique Document Percentage, 1995 and 1999.

This chart shows the Unique Document Percentage for November 1995

and January through April 1999. Results from Galaxy, Open Text, and

InfoSeek are unavailable. The 1999 results are based on 224,195 queries.

Thirty results were requested from each service.

102

0%

5%

10%

15%

20%

25%

30%

35%

Exc
ite

Gala
xy

Inf
oS

ee
k

Ink
tom

i

Ly
co

s

Ope
n T

ex
t

W
eb

Cra
wler

Yah
oo

Alta
Vist

a

Goo
gle

Plan
etS

ea
rch

V
ie

w
ed

 D
oc

um
en

t S
ha

re

VDS 1995 VDS 1999

Figure 5.5: Viewed Document Share, 1995 and 1999.

This chart shows the Viewed Document Share for each service, com-

paring results from the 1995 study to the 1999 study.

103

services i and j, πi = πj if and only if i = j. The CDP of search service is defined as:

CDP s =

∣
∣
∣
∣
∣

πs⋃

i=0

Dπi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

πn−1⋃

i=0

Dπi

∣
∣
∣
∣
∣

(5.3)

Figure 5.6 plots the CDP for the eight search services HuskySearch uses. While the

CDP can be affected by the ordering of the search services, alternative orderings in

this case produce little difference. As shown, each search service does contribute a

significant number of distinct documents.

However, just because search services return a large number of distinct documents,

that does not mean that they return a substantial number of the documents that are

viewed. To determine the contribution of each search service to the number of viewed

documents, we define the Cumulative Viewed Percentage, CVS , of search service as:

CVS s =

∣
∣
∣
∣
∣

πs⋃

i=0

Vπi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

πn−1⋃

i=0

Vπi

∣
∣
∣
∣
∣

(5.4)

Figure 5.7 plots the CVS of the eight services in the same order as in Figure 5.6. As

shown, each service not only contributes a significant number of documents, but also

returns a significant number of documents that are viewed. The reason for this is

that most of the documents that are viewed are each returned by only a single search

service. Figure 5.8 shows a pie chart that partitions the documents viewed by the

number of services that returned them. As shown, 80% of the documents viewed by

users were returned by only one search service.

5.1.4 Independent confirmation

Two independent studies confirmed our findings that no search service provides a

comprehensive search of the Web. In one, Lawrence and Giles selected 575 queries

issued by scientists to the Inquiris meta-search engine [66]. They then retrieved all

104

0%

20%

40%

60%

80%

100%

Goo
gle

Plan
etS

ea
rch

HotB
ot

Yah
oo

Exc
ite

Ly
co

s

W
eb

Cra
wler

Alta
Vist

a

C
um

ul
at

iv
e

D
oc

um
en

t P
er

ce
nt

ag
e

Figure 5.6: Cumulative Document Percentage.

This chart shows the Cumulative Document Percentage, CDP, for each

search service. The figures show that that each search service contributes

a significant number of the documents returned. There were a total of

6,757,671 documents returned over 224,195 queries. Thirty documents

were requested from each search service.

105

0%

20%

40%

60%

80%

100%

Goo
gle

Plan
etS

ea
rch

HotB
ot

Yah
oo

Exc
ite

Ly
co

s

W
eb

Cra
wler

Alta
Vist

a

C
um

ul
at

iv
e

V
ie

w
ed

 P
er

ce
nt

ag
e

Figure 5.7: Cumulative Viewed Percentage.

This chart shows the Cumulative Viewed Percentage, CVS, for each

search service. The values illustrate that each search service contributes

a significant number of the documents viewed by users. These numbers

strongly correlate with the numbers presented in Figure 5.6. There were a

total of 211,850 documents viewed out of 6,757,671 documents returned.

106

1 service
80%

3+ services
6%

2 services
14%

Figure 5.8: Percentage of viewed documents returned by one, two, and three or more
services.

This chart shows the percentage of documents viewed that were returned

by one, two, and three or more services. These figures are from the 224,195

queries evaluated in the 1999 study.

107

of the results available from every service and compared the overlap directly. They

qualified the 575 queries by ensuring that none of the queries retrieved more than 200

results from any search service. Table 5.1 shows their calculations of coverage for six

search services. Coverage is defined by the number of references returned by a search

service divided by the total number of distinct references returned, or more formally:

Coverages =
|Ds|

|
⋃

i Di|
(5.5)

For their study, HotBot contained 57.5% of the results available.

While coverage is useful in determining the contribution made by a single service,

it does not help differentiate one service from another. For example, while HotBot

had coverage of 57.5% and Lycos had coverage of 4.4%, it is not clear what the benefit

is of combining the two. The combined coverage could be as high as 61.9% if the two

services provide unique results, or could remain at 57.5% if HotBot subsumes Lycos.

Thus, we chose to use UDP and CDP in our experiments.

Bharat and Broder conducted a similar study [12], evaluating AltaVista, Excite,

InfoSeek, and HotBot. Rather than determining the overlap of search results for a

number of queries, they instead selected a number of URLs at random and determined

if those URLs were contained within the indices. To find a random URL, they created

randomly generated queries based on a lexicon of roughly 400,000 words derived from

300,000 documents available in the Yahoo! directory. They then submitted this query

to one of four search services, and randomly picked one of the top 100 references that

were returned.

In order to determine if any of the other three search services had also indexed the

selected URL, they created a strong query for that URL. The strong query is a query

meant to uniquely identify a page. Bharat and Broder constructed strong queries by

selecting the “k (say 8) most significant terms on the page. Significance is taken to be

inversely proportional to frequency in the lexicon” [12]. They then queried the three

remaining search services with the strong query and examined whether the selected

108

Table 5.1: Coverage of search services.

Service Coverage

HotBot 57.5%

AltaVista 46.5%

Northern Light 32.9%

Excite 23.1%

InfoSeek 16.5%

Lycos 4.4%

Coverage calculations from Lawrence and Giles experiments [66]. Cov-

erage is the number of references returned by a service divided by the total

number of references returned by all services. These figures are from 575

queries.

URL was contained within the results.

Bharat and Broder conducted their experiment using four trials, each of which

utilized a randomly generated set of roughly 10,000 queries except the third trial

which used roughly 5,000. Trials 1 and 2 used disjunctive queries, and trials 3 and 4

used conjunctive queries. Table 5.2 shows their findings.

These figures are broadly consistent with our own and show that no search service

provides a fully comprehensive search of the Web. However, our findings for the

services’ UDP were higher than Bharat and Broder’s. There are two likely causes of

this discrepancy. the first is that in our study we only requested thirty documents from

each service. Presumably, requesting more would result in fewer unique documents.

The second cause is due to the method in which Bharat and Broder established

whether a search service indexed a particular document. A given document may

be returned from a query by one service, but due to differences in the indexing and

109

Table 5.2: Unique Document Percentages for Bharat and Broder.

AltaVista Excite HotBot InfoSeek

Trials 1 & 2 61% 68% 53% 82%

Trials 3 & 4 38% 80% 52% 83%

1999 Evaluation 93% 85% 81% n/a

The Unique Document Percentages calculated for trials 1 & 2 and tri-

als 3 & 4 of the Bharat and Broder study. Trials 1 & 2 used randomly

generated disjunctive queries, trials 3 & 4 used conjunctive queries. Also

presented for comparison are the UDP results from Section 5.1.3 for Al-

taVista, Excite, and HotBot. Results from InfoSeek were not available.

These figures confirm our findings that search services return a largely

disjoint set of results for a given query. However, they also indicate that

our figures for UDP may be exaggerated because we only request thirty

documents from each service.

110

retrieval algorithms, that document may not be returned by the same query to another

service, no matter how many results are obtained. By constructing strong queries,

Bharat and Broder were able to determine whether a search service contained a

particular document independent of the query used. However, even though they

were able to determine that a search service’s index contained a particular document,

it is unclear if that’s of any benefit to the user if the document is not returned given

the appropriate query.

5.2 Longevity of meta-search

We have shown that combining the results from several search services provided a

significant advantage in 1995 and continues to do so in 1999. However, there is an

argument to be made that the real-world constraints described in Section 2.6 are only

temporary in nature. Costs of disk storage are decreasing, CPU speeds are increasing,

and greater bandwidth is becoming more widespread. Therefore, it could just be a

matter of time until a single search service is able to provide comprehensive Web

search, obviating the benefits of meta-search.

Two rates are necessary to determine if a particular Web search service will index

the entire Web: the rate of growth of the search service’s index, and the rate of growth

of the Web. Furthermore, if the size of the Web and the size of the index are known,

we can predict when the search service will index the entire Web. In Figure 2.6 we

presented Sullivan’s historical data on the size of Web search service indices. From

this data, we are able to calculate trends on the sizes of the indices.

Calculating the growth of the Web is not as straightforward. Since there is no

direct means of retrieving all available Web pages, there is no way to retrieve them

at two different time points and calculate the difference. However, if an estimate of

the size of the Web could be calculated indirectly, then the rate of change can be

determined by extrapolating a trend from estimates taken at different times.

111

5.2.1 Calculating the size of the Web

One technique we can use to estimate the size of the Web is probability theory [66, 12].

Probability theory provides a mechanism to determine the size of a set if two random

overlapping subsets are known. The size of the set is derived in the following manner:

LetW be a set, and let A and B be two independently created random subsets ofW.

Let P (A) represent the probability that an element is a member of A. Since A is a

random subset, we know that:

P (A) = |A|/|W|

|W| = |A|/P (A)

Thus, if we know P (A), we can calculate the size of W. Since A and B are indepen-

dent, we also know the following:

P (A ∩B) = P (A) · P (B)

P (A) = P (A ∩B)/P (B)

By Bayes’ Theorem, we can then define P (A) as:

P (A) = P (A ∩B|B)

Thus, the size of W is calculated by:

|W| = |A|/P (A)

= |A|/P (A ∩B|B) (5.6)

P (A∩B|B) can be estimated by selecting a random sample of B and testing whether

they are elements of A.

The two studies described in Section 5.1.4 used Equation 5.6 to estimate the size of

the Web. The studies chose two search services, A and B, to represent the randomly

112

created subsets of the Web, W. They then calculated P (A ∩ B|B) for one of the

services, and used the published size of the index of A to calculate |A|/P (A ∩B|B).

However, the method for estimating P (A∩B|B) differed in the two studies, producing

different results.

Lawrence and Giles estimated P (A ∩ B|B) by selecting 575 user queries. They

issued each query to A and B and retrieved all available documents. They then

calculated P (A ∩ B|B) for each document in B. Using AltaVista and HotBot as A

and B respectively, Lawrence and Giles calculated the Web as 320 million documents

in December 1997 [66].

Bharat and Broder calculated P (A∩B|B) in a more direct fashion, as described in

Section 5.1.4. They created a random query, issued it to A and B, selected a random

result from B, and checked if it was a member of A. They calculated the size of the

Web in November 1997 as 200 million documents [12].

The disparity between the two estimates is most likely caused by various forms of

bias introduced in the sampling and checking mechanisms. Lawrence and Giles used

queries from scientists at NEC. Since the queries may be esoteric compared to average

Web queries, the result of these queries may be equally esoteric. Spiders may be biased

towards finding information more applicable to the general public, and thus the search

services may only index a small portion of the available relevant documents. Since the

inherent likelihood of two search services indexing the same document may be lower

than average, the overlap between two search services may be overestimated. On the

other hand, the randomly generated queries used by Bharat and Broder may also

introduce bias into the system. Since the queries are randomly generated, documents

that match the queries are likely to be long, content rich documents. Spiders may have

a bias towards locating these documents because of their content. Thus, the Bharat

and Broder study may underestimate the size of the Web because the documents they

choose are inherently more likely to be contained in multiple search services.

113

5.2.2 Search service and Web growth trends

In a follow-up to their 1997 study, Bharat and Broder calculated their estimate on

the size of the Web in June 1997 as 125 million documents, and in March 1998 as 275

million documents [13]. These figures indicate that the Web is doubling every nine

months. Another estimate on Web growth is that the Web doubles every year. This

estimate is based on the Netcraft Web Server Survey, which counts the number and

type of Web servers on the Internet [74]. Figure 5.9 shows the total number of Web

servers for each month starting with August 1995. As shown, the number of Web

servers doubles every year.

With estimates on the size and growth of the Web, as well as historical data on the

size and growth of Web search services, we are able to extrapolate whether any search

service will be comprehensive in the near future. Figure 5.10 charts the historical size

of the largest Web search services: AltaVista, HotBot, and and Northern Light. The

chart then plots an upper bound on their growth until March 2001. The upper bound

is the percentage increase from March 1998 through March 1999. In addition, two

trends are shown indicating the growth of the Web. The first is based on Lawrence

and Giles’ estimate of 320 million Web documents in December 1997, using the Web

growth estimate of doubling every year. The second is based on Bharat and Broder’s

estimates of 125 million documents in June 1997, 200 million documents in November

1997, and 275 million documents in March 1998.

Projecting forward, the disparity between the size of the Web and the size of the

Web search services only increases. Simply put, Web search services are not doubling

in size every year, whereas the Web itself is. Even more apparent is that the advantage

of using meta-search will soon become a necessity. At the time of this writing, the

major Web search services have each indexed 150 million documents. The estimates of

the size of the Web are between 600 and 700 million documents. Even if the indices of

the top three Web search services were completely disjoint, they would still be unable

114

Jan-99

Jan-96

Jan-97

Jan-98

0

1

2

3

4

5

6

Aug
-95

Nov
-95

Feb
-9

6

May
-9

6

Aug
-96

Nov
-96

Feb
-9

7

May
-9

7

Aug
-97

Nov
-97

Feb
-9

8

May
-9

8

Aug
-98

Nov
-98

Feb
-9

9

May
-9

9

W
eb

 S
er

ve
rs

 (m
ill

io
ns

)

Figure 5.9: Number of Web servers on the Internet.

This chart shows the total number of Web servers on the Internet. As

shown, the number of Web servers doubles roughly every year. This data

was extracted from the publicly available monthly reports on the Netcraft

web site [74].

115

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Mar-
97

Jun-
97

Sep-
97

Dec-
97

Mar-
98

Jun-
98

Sep-
98

Dec-
98

Mar-
99

Jun-
99

Sep-
99

Dec-
99

Mar-
00

Jun-
00

Sep-
00

Dec-
00

Mar-
01

In
de

xe
d

P
ag

es
 (m

ill
io

ns
)

AltaVista NorthernLight Inktomi

L&G Doubles 12mo B&B Doubles 9mo

Historical Projected
B&B

L&G

NL

Figure 5.10: Trends of the size of search service indices.

This chart shows the historical data from Figure 2.6 for AltaVista,

NorthernLight, and Inktomi (HotBot), and predicts the growth of those

search services using the yearly percentage increase from March 1998

through March 1999. It also plots two estimates on the growth of the

Web. It shows an estimate based on Lawrence and Giles Web size esti-

mate with the size of the Web doubling every year, and another estimate

based on the Bharat and Broder estimate with the size of the Web doubling

every nine months. As shown, the size of the Web is rapidly outpacing the

size of the search services.

116

to provide a comprehensive Web search. Thus, the need for continued work regarding

meta-search is clear.

5.3 Instability of Web search service

The basic functionality of any meta-engine is to submit a query to many underlying

sources and collate the results that are returned. Since the quality of the documents

in the collated results are only as good as quality of the documents in the original

results, the performance of the underlying search services merits detailed scrutiny.

Our experiments, presented in Section 5.1, demonstrate that each of the major search

services returned only a fraction of the URLs of interest to users, and that the overlap

of the results returned by different search services was surprisingly small.

Another key question is how the sundry search services behave. If we view the Web

as a digital library, then the search services could be likened to online card catalogs.

All available information is indexed somewhere in the search services, and for a given

search, while the results may change slightly over time due to the addition of new

titles and the removal of other titles, they will remain largely stable. However, this

does not appear to be the case.

5.3.1 Repeated query study

As a means of evaluating the stability of the services, we conducted an experiment

to measure the change in the search services’ output and compared that change with

what was expected. We issued a set of twenty-five queries to nine major search

services: AltaVista, Excite, Lycos, HotBot, InfoSeek, Lycos, Northern Light, Planet-

Search, WebCrawler, and Yahoo!, and performed analysis on the documents that were

returned. The queries are an independently generated set that were used as part of

the Lawrence and Giles study. The particular queries are presented in Appendix A.

For our study, we modified the queries by removing any syntactic or logical modi-

117

fiers in the query and treated them as pure keyword queries. All queries except one

consisted of two or more words.

Methodology

We define the “instability” of a search service as the difference between two sets of

results, calculated from the same query submitted at two different times. Because

the Web is a dynamic environment, there will naturally be some degree of instability

as documents are added and removed from an index. However, the question remains

as to whether or not a search service exhibits instability that is in line with the rate

of Web change and growth. To determine the stability of a search service over a

period of time, we repeatedly issued a set of queries to the nine major search services.

The URLs were then extracted from the results, and were compared with the URLs

extracted from a previous submission of the query to the search service.

The twenty-five queries were issued twenty-five times over a one month period,

between December 7, 1998 and January 8, 1999. Some search services have reported

using a form of query result caching, mostly to improve performance for users who

have their browser reload the page, causing a reissue of the query [19]. To avoid

measuring the effects of query result caching mechanisms, the interval between issuing

the set of queries increased exponentially, with the initial interval being 15 minutes,

then increasing to 30 minutes, 60 minutes, and so forth.

Metrics

The URLs in the document references returned by the search services were extracted

into a URL set. Only URL sets that came from the same service and same query

were compared. As each service is consistent in the way it reports a particular URL,

simple string comparison was used to detect duplicates. The difference between the

118

two URL sets A and B was measured using the bi-directional set difference:

URL set difference =
|(A−B) ∪ (B − A)|

|A ∪B|
(5.7)

This measure does not consider changes in the position of URLs because while a

change in position can make it more or less convenient to locate information, that

information can still be found via the query.

5.3.2 Experimental results

A reasonable assumption to make is that the results of a search service do not change

substantially over a month. In the initial query submission run, 25,386 URLs were

returned from the nine services. A run done a month later contained 25,756 URLs.

However, 8,222, or 32.39%, of those URLs were not present in the initial queries’

results. Clearly, substantial change had occurred. Further analysis, broken down

by the individual search services as shown in Figure 5.11, shows that change is not

isolated to a few services. The output from eight of the nine services changed by over

40%. The only exception is AltaVista, which changed by slightly over 20%. If the

results were restricted to the Top 10 results, most services report more change, with

InfoSeek, the highest, at 64%.

These initial results were retrieved using the Default search syntax and options

of each service, which typically involves some kind of “best match” ranking. “Best

match” ranking uses a function that ranks documents based on how many of the

query words they contain. Two common alternatives were also examined: submitting

the entire query as a phrase, and “AllPlus” syntax, which is to preface each term

with a “+” sign. Prefacing a term with a “+” has become standard on Web search

services to designate a term that is required to be present in the referenced document.

One might assume that the default search syntax produces general results that would

change substantially over time, and that more specific syntax would produce results

that are more stable. Table 5.3 summarizes the average difference across all services

119

Result Set Difference between 9 AM 12/7 and noon 1/8

0%
10%

20%
30%
40%
50%

60%
70%

Alta
Vist

a

Exc
ite

HotB
ot

Inf
oS

ee
k

Ly
co

s

Nor
the

rn
Lig

ht

Plan
etS

ea
rch

W
eb

Cra
wler

Yah
oo

R
es

ul
t S

et
 D

iff
er

en
ce

Default 200 Default 10

Figure 5.11: Top 200 and Top 10 results using default options.

As shown, all the Top 200 results except AltaVista changed by over 40%

difference over the course of 1 month. If only the Top 10 are examined,

then most differ between 50% and 60%, indicating that some URLs are

being re-ordered. These figures compare the URLs from the first run to

the second to last run which exhibited the most change.

120

Table 5.3: Change over one month for Default, Phrase, and AllPlus options, averaged
across all services for Top 10 and Top 200.

Default AllPlus Phrase

Top 10 54.38% 33.34% 30.77%

Top 200 45.60% 22.92% 19.84%

Note that the “Default” syntax and Top 10, which is the common case

for most queries [100], changes by over 50%. The best case, using the

Phrase option and getting 200 results, is still substantial at just under

20% difference.

for Default, AllPlus, and Phrase syntax. Averaged across all services, the change

for the Top 10 was 54.38% and 45.60% for the Top 200. Although there is less

change when using different query syntax, the change is still substantial. Furthermore,

numerous studies have shown that most users use the default syntax [92, 100]. Thus,

our observations regarding queries using the default syntax are likely more applicable

to average Web users.

One might argue that this high rate of change in search service output is due to

growth and change in the Web. To determine if this is the case, we plotted the average

rate of change for the search service output throughout the month for the Default,

AllPlus, and Phrase syntax, as shown in Figure 5.12. In addition, we plotted a flat

25% per month growth and change rate for the Web. This rate is an upper bound

of the estimated growth rate by Bharat and Broder as presented in Section 5.2.2.

The output changes at a roughly 40% linear rate for Default and 30% for the AllPlus

and Phrase options. Clearly, while Web change and growth may explain some of the

change in the results, it does not explain all of the change.

Another argument for the high rate of change in search service output is that

121

Result Set Difference from 12/7 - 1/8

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25 30 35

Days

R
es

ul
t S

et
 D

iff
er

en
ce

Default 10 Phrase 10 AllPlus 10 25%/Mo

Figure 5.12: Average change over time for Top 10 URLs.

The AllPlus results grow roughly linearly. Phrase results are also fairly

linear, with a notable jump near the 20,000 minute mark. Default results

are much more errant, with a corresponding jump to the phrase graph as

well as two others. However, all results grew faster than the estimate

for Web growth and change of 25% per month. The interval was reset

to a hour after ten days in order to obtain more data points, and at the

termination of the experiment the query sets were run two more times

manually, once at noon and once at midnight, to ensure that there were

no errors in the automatic submission script.

122

because the Web is much larger than any one search service, search services may be

growing at a faster rate than the Web in order to stay up-to-date and competitive

with one another. As we reported in Section 2.6, Sullivan has reported that most

services did not report any substantial growth in the testing time period except for

NorthernLight, although PlanetSearch was not part of his study [105].

Even though the queries used in this experiment were independently generated,

one concern may be they were simply susceptible to returning results that had a high

degree of change. To determine if this was in fact the case, we examined how many

URLs were removed in subsequent queries only to reappear later. In order to remove

the effect of URLs falling outside either the Top 10 or Top 200 window, we looked

at which of the Top 10 did not appear in the Top 200 of a subsequent query, only to

reappear again in the Top 10 of later query results. Figure 5.13 shows our results.

As shown, in five out of the nine services over a third of the URLs returned were

temporarily removed from the search results. While not as pronounced, three of the

remaining four services also exhibit some of this phenomenon. WebCrawler, which

has the lowest reported index of the nine, was the only service that did not display

this phenomenon at all.

Since most services show a higher degree of stability when 200 documents are

retrieved as compared to 10, and most services reported that they have thousands of

matches for most of the twenty-five queries, it is a valid conjecture that by retrieving

all available results, there might be substantially less instability in the results over a

month’s time. This may in fact be true. Unfortunately, some services have a hard

limit on how many documents are retrievable regardless of how many are advertised.

Therefore we were unable to retrieve all available documents. At the time of these

experiments, AltaVista had a hard limit of 200, which was the smallest limit of all

nine services. In addition, a histogram of the documents viewed during April 1998

on the HuskySearch service [93] shown in Table 5.4 demonstrates that 99.69% of the

documents viewed are ranked 200 or better. A similar study by Silverstein et al.

123

0%

10%

20%

30%

40%

50%

60%

Alta
Vist

a

Exc
ite

HotB
ot

Inf
oS

ee
k

Ly
co

s

Nor
the

rn
Lig

ht

Plan
etS

ea
rch

W
eb

Cra
wler

Yah
oo

U
R

Ls
 R

em
ov

ed
 T

em
po

ra
ri

ly

Figure 5.13: Percentage of URLs removed temporarily.

This chart shows, for each service, the percentage of URLs returned

in the Top 10 that were not present in the Top 200 of a subsequent result

set, only to reappear in the Top 10 of another subsequent result set. These

results used the Default query settings; results using AllPlus and Phrase

were extremely similar except for InfoSeek, where the results decreased by

roughly 10% and 20% respectively.

124

Table 5.4: Histogram of viewed document ranks.

Rank Range Pct. Covered

1-10 52.20%

1-30 79.98%

1-50 88.49%

1-100 96.97%

1-200 99.69%

This table shows shows four ranges of URL ranks in a ranked relevancy

list, where a rank of 1 is the top of list, along with the percentage of URLs

that were viewed were contained within that range. These numbers are

calculated from 38,849 URLs that were viewed during April 1998 on the

HuskySearch parallel web search service.

on a million queries submitted to AltaVista showed that 95.7% of all users did not

look beyond 30 results [100]. These findings may be exaggerated because AltaVista

presents ten documents to the user at a time, as compared to HuskySearch, which

presents all available documents on a single page. For all practical purposes, the Top

200 documents are sufficient to compare instability.

5.3.3 Analysis

This experiment demonstrates that there is substantial change in Web search service

results, and we show that there is substantial change that is unexplained by the

Web’s dynamic nature. Our hypothesis for this high rate of change in search service

results is that the search services trade off quality for speed, and we saw the impact

of those tradeoffs. One common technique among search services is to use a limit

125

on the resources available for each query. Thus, if a system is heavily loaded, the

results may not be of as high a quality as when the system is lightly loaded. For our

experiment, “lower quality” translates to a greater difference between those URLs

and the originals. For example, the spikes in Figure 5.12 are consistent with this

technique. The large positive jump near the 12 day mark began with a run that

started on Saturday at 11 PM PST, which is a light load time for the search services.

The apex of the jump was a run submitted on a Monday at 7:30 AM PST, which

is a heavy load time, according to the search services. The negative jump at the

end of the experiment started with a run submitted on a Friday around noon, still

peak use hours, and ended with a run submitted on a Friday near midnight, which

is decidedly off-peak. Both of these jumps occurred when one run was done during

“peak” traffic time, and the other during “off-peak” time. The spike that occurred

near the beginning of the experiment was the only other occurrence of two consecutive

points where one run was during “peak” time and the other “off-peak” traffic times.

Another common technique is to “threshold” results. This technique involves

finding a set number of results that match the query within a certain threshold, rather

than finding all matches and placing them in an absolute order. This technique is

typically used on a portion of the search service’s index that is placed in main memory.

Searching a memory-based database is significantly faster than searching a disk-based

one; therefore, if an appropriate number of “good” results can be found in main

memory, those will be returned under the thresholding scheme. If the requisite number

of results are not found in main memory, then the search service will swap a portion

of the memory index with a portion of the disk index that does have the appropriate

results. Either way these results may not be the best results that could be obtained

by searching through the entire index contained on disk. Furthermore, depending

on when the query was issued, URLs may be removed and then reappear depending

on the contents of the memory-based index. The high rate of change, especially the

type of change exhibited by Figure 5.13, is consistent with the application of this

126

technique.

While these two techniques do address most of the change, each service has a

number of proprietary mechanisms which may better explain their behavior. For

example, Brian Pinkerton, Chief Scientist at Excite, Inc., explained that every week

Excite indexes 10 million pages on the Web at random, and uses these to replace the

10 million oldest pages in its index, regardless of the quality of those pages [81]. Thus,

after four weeks, up to 80% of Excite’s index may have changed.

5.3.4 Observations about individual services

There were some interesting notes concerning individual services during this experi-

ment. HotBot’s ranking implied that many pages were ranked equivalently and that

sorting among equivalent ranks was random. For each query option, it had a high rate

of change at the Top 10, but much lower rate of change for Top 200. AltaVista did

exceptionally well with phrases, with change under 5% for both Top 10 and Top 200.

WebCrawler’s results had comparable change to other search services with Default

syntax; however, it had near-zero change for AllPlus and Phrase syntax. Finally,

Yahoo! was exceptionally high in every category. At the time of these experiments,

Yahoo! had recently switched its backup search service for queries that contained

terms not found in its hand-created directory from AltaVista to a service by Inktomi

Inc., which provides the same underlying technology for HotBot. We believe that

Yahoo!’s exceptional performance in this experiment is more closely related to Ya-

hoo! bringing their backup search service up to speed rather than an intrinsic behavior

of that service.

5.3.5 Impact of unstable results

The output of search services changes at a surprisingly high rate over time, with the

rate of change as high as 64%, depending on the search service used and the time

between query submissions. Furthermore, as many as 49% of the URLs that appear

127

in the Top 10 of some result set disappear in subsequent results, only to reappear

again later. We hypothesize that the reason for the observed instability in search

results is a quality-for-speed tradeoff made by the search services, not the addition of

new documents that push older ones outside the 200 document window. The results

presented in Section 5.2 show that the most search services are not increasing the size

of their indices dramatically, indicating that not only are the search services unable to

return information contained within their own indices, but are covering an decreasing

portion of the Web.

Unstable search service results are counter-intuitive for the average user, leading

to potential confusion and frustration when trying to reproduce the results of previous

searches. Scientists who use the Web to locate up-to-date research information run

into the same problems. Scientists using search service results as part of their exper-

imental research, such as Lawrence and Giles, need to consider whether instability

affects the results of their experiments. Educators who make use of search services in

assignments may find those assignments to be unfair because their results cannot be

replicated. And people who use the Web for dissemination of information may find

that even though a search service has indexed their information, it may still not be

retrievable.

In addition, unstable searching does make large-scale, albeit slower search re-

sources more attractive. For example, the Internet Archive [52] is attempting to

archive the entire Web. While it will unlikely be as fast as modern search services, it

may be both more stable and more comprehensive.

5.4 Summary

In this chapter, we demonstrated the value of meta-search through a number of ex-

periments. We have shown no single search service was comprehensive in 1995, thus

necessitating a meta-search service such as MetaCrawler. While the available search

128

services have changed, the advantages gained through meta-search are just as valu-

able in 1999 as they were in 1995. Furthermore, we extrapolated the rate of growth

of the Web as well as the rate of growth of three largest search services available. We

predicted that not only will Web search services be unable to fully index the Web

by the end of 1999, but that the three largest search services combined are still not

enough to provide a comprehensive Web search. Finally, we demonstrated that not

only do search services provide an incomplete search of the Web, but that the results

are often inconsistent.

We now turn to Collaborative Index Enhancement, an extension to HuskySearch

that not only addresses some of the issues related to inconsistency of search services,

but also provides a method of improving search results through user access patterns.

129

Chapter 6

COLLABORATIVE INDEX ENHANCEMENT

In the previous chapter, we demonstrated that MetaCrawler provides a signifi-

cant improvement over searching using traditional spider-based and directory-based

search services. We also showed current trends indicating that meta-search will con-

tinue to provide a substantial improvement over traditional search. However, while

MetaCrawler does provide a significant improvement over using single Web search

services, MetaCrawler does not provide a complete comprehensive search, nor does

it provide a stable search. The Web is larger than the combined size of the search

service indices, and the results of contemporary search services are currently unsta-

ble. Search services return documents, then sometimes omit them from results, then

return them again at a later time.

An approach we took to address some of these difficulties is to incorporate data

obtained from previous user interactions into the current search. In this chapter we

present Collaborative Index Enhancement, or CIE, a general model for incorporating

data from previous user queries into the MetaCrawler architecture. We show how

certain instantiations of CIE are able to address the problem of unstable results. In

addition, we demonstrate that the overall performance of search is improved through

the use of prior query data.

The remainder of this chapter is organized as follows:

• We begin with an overview of the two types of collaboration, direct and indirect,

and highlight some representative techniques. We then present a general model

for indirect collaboration.

130

• We describe the design and implementation of our CIE prototypes in Section 6.2.

We show that its incorporation into MetaCrawler does not require modifications

or additions to the overall architecture. We showcase four enhancement tech-

niques that use CIE. Two techniques use the entire results of a search as a

document in its own right, and two use individual results as augmenting infor-

mation to enhance relevancy ranking criteria. We also examine how the degree

of user interactivity affects the enhancement.

• Having described the CIE system, Section 6.3 presents an evaluation of these

systems via a controlled user study and a 12 week log analysis.

6.1 Using collaboration to improve retrieval performance

Collaboration is a general technique that allows users to help one another locate

relevant information. Collaboration can be used in one of two ways: directly and

indirectly. Direct collaboration occurs when a user locates information directly from

another user. Recommending a doctor to a friend and forwarding an interesting

article to a colleague are two real-world examples of direct collaboration. Indirect

collaboration occurs when a user obtains information from other users indirectly.

The New York Times Bestseller lists and The Billboard Hot 100 are two real-world

examples of locating information through indirect collaboration.

On the Internet, there is a large potential for finding information through collab-

oration with several million people. We now explore work done using both direct and

indirect collaboration online.

6.1.1 Information retrieval through direct collaboration

One of the most compelling instances of direct collaboration is collaborative filtering

[97]. Collaborative filtering is based on the assumption that if person A likes items

X, Y , and Z and person B likes X and Y but has not seen Z, then person B

131

would probably like Z. People utilize a collaborative filtering system by giving the

system a personal profile. The system then retrieves potentially useful information

by locating users with similar profiles and retrieving the information that those users

found relevant. This has been successfully implemented by HOMR, the Helpful Online

Music Recommendation Service [72], now part of the Firefly network [41]. Users gave

HOMR a list of their favorite Compact Discs (CDs). HOMR then located people

with similar CD lists and recommended the CDs from their lists that the user had

not seen. A similar system is the GroupLens project, which uses collaborative filtering

to recommend USENET news articles based on whether or not other users with similar

profiles read a particular article [58].

6.1.2 Information retrieval through indirect collaboration

Collaboration can also be used to locate information indirectly. For example, a system

may enable all users to enhance a single, centralized information source. Thus, rather

than obtaining information from users who share similar profiles, the results which

are obtained are enhanced by the tastes and preferences of all users.

Enhancing a searchable index based on user interaction has been experimented

with as early as 1971, when Brauen reported on experiments using interaction to

modify a searchable index [17]. He used the SMART [89] Information Retrieval search

engine as his test bed. In the SMART index, a document is represented by a vector

of degree n, where n is the number of distinct words found in all available documents.

Each element of the vector represents the weight, or importance, of the word in the

document. A common formula for weight is the number of times the word appears in

the document divided by the length of the document. Brauen enhanced the index by

directly modifying the document vectors in the index. He obtained user feedback on

relevant and irrelevant documents. He increased the weights of terms that appeared

in relevant documents in every document vector, and likewise decreased the weights of

terms that appeared in irrelevant documents. He found that this type of enhancement

132

led to higher precision, the percentage of relevant documents returned in a query, and

recall, the percentage of all available relevant documents returned in a query.

Optimizing database queries can be expensive. Raghavan [84] described an ele-

gant method of locating stored optimized queries previously submitted by users. He

compared the results from the current, unoptimized query with those of the optimized

queries. His work focused on the tradeoffs of obtaining possibly suboptimal results

from prior queries to the computation time of optimizing the current query.

Traditional Information Retrieval focused on providing documents based on rich,

well-formed queries. In contrast, in the 1990s users tend to submit queries containing

only two or three words [79, 100]. Not surprisingly, traditional Information Retrieval

engines often perform very poorly on the Web. A method to improve the performance

of traditional search engines on the Web is to automatically expand the query prior

to submitting it. Fitzpatrick and Dent explored using prior queries to add terms

to a query automatically, and demonstrated performance improvements on TREC

benchmarks [42].

Indirect collaboration can also be used to enhance search results. Direct Hit is

using collaboration to augment the ranked relevancy lists returned by Web search

services [31]. The Direct Hit system logs which documents were viewed in a simi-

lar fashion to HuskySearch. Direct Hit then uses that information to rank popular

documents higher.

6.1.3 A general model of indirect collaboration

Collaborative Index Enhancement, or CIE, is a general model for enhancing a search-

able index through indirect collaboration. Let I be a searchable index, and let d be

the data extracted from a user query. Let enhance() be a function that enhances a

searchable index I given d. CIE can then be defined as the process of obtaining an

133

enhanced index I ′ from I and d in the following manner:

I ′ = enhance(I, d) (6.1)

CIE can be instantiated in a number of ways through different definitions of d,

the user data, and the enhance() function. We now describe how we designed and

implemented a CIE prototype in the HuskySearch system, a publicly available Web

metasearch service derived from MetaCrawler [92, 94], and showcase four instantia-

tions of CIE.

6.2 Collaborative Index Enhancement design

A CIE instantiation is incorporated into HuskySearch by creating a separate search-

able index that contains the enhancements derived from previous queries. A wrapper

for this index is then added to HuskySearch. When a user makes a query, Husky-

Search searches the CIE index in parallel with the other services, and the CIE results

are merged in with the documents from traditional indices. Additional CIE instanti-

ations can be integrated by adding a new index for each new CIE instantiation. This

is depicted graphically in Figure 6.1. By using this design, we are able to implement

a CIE system without modification or control of the original Web indices used for

searching. To distinguish Web indices from CIE indices, we will often refer to CIE

indices as auxiliary indices or just auxiliaries.

This design fits seamlessly into the MetaCrawler architecture described in Sec-

tion 3.3. Additional wrappers are added to the Harness, and a URL Database Man-

ager module is added to the I/O Layer. The Database Manager will be described in

Section 6.2.3.

Four CIE indices are described in this chapter:

ReturnedURLs: ReturnedURLs contains all the documents referred to by results

documents of previous queries; i.e. for all queries, the referenced documents are

downloaded and inserted into this index.

134

Lycos Excite Yahoo CIE1 CIE2

Doc

HuskySearch

Figure 6.1: CIE architecture.

Each index feeds a list of documents into HuskySearch, which collates

these documents into a single results document containing a list of ref-

erences. This document is then fed back into the CIE auxiliaries which

process and index it.

ClickedURLs: ClickedURLs contains all the documents referred to by results docu-

ment of previous queries that were viewed; i.e. each document in ClickedURLs

was viewed by some user in the course of a search.

ResultsPages: Each document in ResultsPages is the results document from a par-

ticular previous query; i.e. it is the HTML page containing URLs, titles, and

snippets to other pages.

SuccessfulResultsPages: Each document in SuccessfulResultsPages is a results

document where at least one of the results was clicked on.

We will describe each of these in terms of the model presented in Section 6.1.3.

Before we proceed, we define HuskySearch in terms of the CIE model. Although

HuskySearch is a meta-engine and contains no index of its own, its index can be

considered to be a union of the indices of the services it queries. Let Is represent the

135

index of search service s. HuskySearch’s index is defined as:

IHS =
⋃

i

Ii (6.2)

Let q be a user query. We define the document dq = HS(q) as the document

obtained by issuing query q to HuskySearch. This document is the results page,

which is simply a list of document references. We define Dq to be the set of documents

referenced by dq. Note that Dq ⊆ IHS. We define Vq to be the set of documents in

Dq viewed by the user.

6.2.1 Additional information and improved ranking

The ReturnedURLs and ClickedURLs indices are used in two fashions: to return

useful documents not returned by any other search service in response to a user query

and to increase the ranking of useful documents returned by other search services.

Although both indices are populated by documents obtained from the other search

services, there are queries where these auxiliaries will return certain documents while

the other search services will not.

In particular, these indices address the problem of unstable search, as presented

in Section 5.3. All of the documents retrieved via a prior query will be returned

by issuing the query to the ReturnedURLs index. The ClickedURLs index provides

similar functionality but only for documents that are viewed by a user. Thus, if a user

issues a particular query and follows a document, the user will always be able to obtain

that document, even if the search service that originally returned that document fails

to provide it in a subsequent search.

The two indices increase the ranking of documents returned by other search ser-

vices through HuskySearch’s scoring algorithm. When two or more services return the

same document, the document’s confidence score is the sum of each service’s score.

Thus, when ReturnedURLs or ClickedURLs returns a result that another service also

returns, the result’s confidence score is automatically increased by some amount rela-

136

tive to the scores returned by each service. Using a scoring function similar to the one

described has been shown to generate better results when using the TREC corpus in

traditional Information Retrieval experiments [7] as well as on the Web [92].

The ReturnedURLs auxiliary is comprised of all the documents contained within

HuskySearch results. The user data d and enhancement function enhanceRU are

defined as:

d = Dq

enhanceRU (I, d) = I ∪ d

and thus ReturnedURLs is defined as:

I ′
RU = enhanceRU (I, d)

= I ∪Dq (6.3)

The ClickedURLs auxiliary is a subset of the ReturnedURLs auxiliary. Rather

than include all documents returned from a query, ClickedURLs only includes the

documents viewed by a user. The user data d and enhancement function enhanceCU

are defined as:

d = Vq

enhanceCU (I, d) = I ∪ d

and thus ClickedURLs is defined as:

I ′
CU = enhanceCU (I, d)

= I ∪ Vq (6.4)

6.2.2 Convenient query expansion

Query expansion has been shown to produce better results in traditional Information

Retrieval [9]. However, numerous studies have shown that Web users do not modify

137

or expand their queries [100, 64]. This is consistent with our own findings which we

will present in Section 6.3.1. It is unclear why users do not attempt to modify their

query. Our hypothesis is that if users were given a more convenient method of using

query expansion, they might take advantage of it.

The ResultsPages and SuccessfulResultsPages indices are used to implement a

form of convenient query expansion. Results documents from previous similar queries

are interspersed among the normal results of a query. Users are able to view the results

of a previous query in the same manner as viewing a document. Figure 6.2 illustrates

this by showing four document references returned by HuskySearch in response to the

query “Utah Jazz.”

The rational behind using results documents for query expansion is the fact that

the snippets describing a document tend to highlight the important terms in that

document. While some of these terms are the query terms from the previous queries,

others may be related terms. This conjecture is based in part on work by Spink,

who demonstrated that the majority of terms users selected for refinement came

from document title and descriptor fields [102]. By treating a results page as a

normal document, the terms contained within the snippets form a description of

the documents referenced using the most descriptive terms available. If a query

then matches a results page, presumably the documents referenced on that page are

relevant to the query in some manner.

One important distinction between this form of query expansion and other meth-

ods is that there is no mode shift in the interface — users are never required to enter

a “query refinement” stage, such as selecting relevant documents for feedback or by

entering in new terms manually. Because each former results document is available

in a ranked list with other potentially relevant documents, users are able to treat

previous results documents as just another document with potentially relevant links.

This integrated listing also provides the user with an indication as to how relevant a

particular query refinement is as compared to other actual documents that proceed

138

Utah Jazz

WebCrawler: The Official Site of the Utah Jazz Home Court Today’s

Headline...

Yahoo: official site of the Jazz, featuring news, schedule and scores,

players, stats, ...

601 (1/27) http://www.nba.com/jazz/ (WebCrawler: 2 Yahoo: 2)

HuskySearch Query: Jerry Sloan

57 references collated. Jerry Bannon at an Icelandic Party on Long Island,

1973.

101 (0/16) http://huskysearch.cs.washington.edu/...

(SuccessResPgs: 37)

HuskySearch Query: (NBA History)

169 documents collated. NBA at 50: TOP TEN COACHES IN NBA

HISTORY. NBA History: Wilt Chamberlain.

98 (0/9) http://huskysearch.cs.washington.edu/...

(SuccessResPgs: 40)

U of Utah BM Jazz Performance Degree

52 (0 / 1) http://www.music.utah.edu/ugrads/programs/BMjazz.html

(Lycos: 26)

Figure 6.2: Sample HuskySearch results from the query “Utah Jazz.”

Shown are four sample document references obtained from the query

“Utah Jazz.” The middle two references are actually references to the pre-

vious queries “Jerry Sloan,” the coach of the Utah Jazz, and the phrase

“NBA History.” These previous queries are interspaced among normal

Web documents to give the user an indication when query expansion may

produce better results than further examining the available document ref-

erences.

139

it, so that the user does not need to read through a preset number of references before

determining that refinement is necessary.

One interesting phenomenon we observed while building this system is that the

ResultsPages index keeps an implicit query history for each user. Thus, if a user is

looking for a site she previously found via HuskySearch and has trouble remembering

the query she used, it is possible for her to search for the previous query explicitly by

entering query terms.

The ResultsPages auxiliary is comprised of all the results documents returned by

HuskySearch. These documents are lists of document references. The user data d

and enhancement function enhanceRP are defined as:

d = dq

enhanceRP(I, d) = I ∪ {d}

and thus ResultsPages is defined as:

I ′
RP = enhanceRP (I, d)

= I ∪ {dq} (6.5)

The SuccessfulResultsPages auxiliary is a subset of the ResultsPages auxiliary.

Rather than include the results document from all queries, SuccessfulResultsPages

only includes results documents where at least one of the documents was viewed by a

user. Recall that Vq is the set of viewed documents, and thus if Vq 6= ∅ then at least

one document was viewed. The user data d and enhancement function enhanceCU

are defined as:

d =

{dq} if Vq 6= ∅

∅ otherwise

enhanceSRP(I, d) = I ∪ d

140

and thus SuccessfulResultsPages is defined as:

I ′
SRP

= enhanceRSP(I, d)

= I ∪

{dq} if Vq 6= ∅

∅ otherwise
(6.6)

6.2.3 Scaling CIE

Given enough time, every document on the Web might be returned by some query,

and every document on the Web might be viewed. Thus, ReturnedURLs and Clicked-

URLs would simply be indices of the entire Web. Real-world constraints aside, if

these auxiliaries were comprehensive Web indices, they would add little value to a

search because they would simply return the exact same set of results the other Web

search services returned, modulo the minor differences in how the ReturnedURLs and

ClickedURLs indices match documents.

“Enough time” could be as little as a single day. HuskySearch requests 30 docu-

ments from eight search services. If we assume HuskySearch returns 100 documents

on average to a query, after ten million queries ReturnedURLs could consist of up

to one billion documents. At the time of this writing, the Web is not estimated to

be that large. However, ReturnedURLs could likely contain a large percentage of

the Web documents indexed by the the Web search services. All of the Web search

services used by HuskySearch report they receive over ten million queries per day.

Thus, if HuskySearch became as popular as the underlying Web search services, it

could take as little as a single day to populate ReturnedURLs with most documents

available on the Web.

A single CIE auxiliary needs to be relatively small compared to the index it is

enhancing. Therefore, as part of our CIE system we maintain a separate database

that contains statistics on documents, such as when a particular document was last

viewed and the number of times it was retrieved. Using this information, we can

ensure that the sizes of the auxiliaries are reasonable by removing documents which

141

do not appear to add value to current searches. The database is accessed through

HuskySearch by a URL Database Manager, which is a module added to the I/O Layer

as shown in Figure 3.2.

In addition to providing information which keeps the size of CIE auxiliaries rea-

sonable, the URL database also enables us to augment the ranking of URLs directly

based on prior user interaction. For example, documents that are viewed often can

be ranked higher, and documents that are frequently returned but never viewed can

be ranked lower.

While HuskySearch actively uses the URL database to augment its results, the

CIE auxiliaries have not grown large enough to require removal of documents. We

conjecture in Section 6.3.2 that we are not even close to the number of documents

where scaling would be necessary. Thus, we do not present any data on the effective-

ness of this scaling mechanism at this time.

6.2.4 Hardware and software

The CIE indices used by HuskySearch use the Verity Search ’97 search engine v2.0,

running on a DEC AlphaStation under DEC UNIX 3.2. HuskySearch also uses Al-

taVista, Excite, HotBot, Lycos, PlanetSearch, WebCrawler, and Yahoo!, as well as

two University of Washington intranet search services: The Daily [106], the local stu-

dent newspaper; and UWSearch, an index specific to HuskySearch using the Verity

engine.

6.3 Experimental validation

We designed our system to find relevant documents on the Web. Since there is not yet

an available standard test corpus of Web documents, we chose to conduct experiments

using the Web. Another approach would have been to use existing static collections

of non-Web documents, such as the TREC collections [109]. However, due to the

142

limited number of available queries, we did not feel that these collections would fully

illustrate the benefits of CIE.

We present two sets of experiments. The first is a user study that evaluates all

four CIE auxiliaries where all of the users involved were attempting to answer the

same five questions. This test was performed to see which, if any, of the auxiliaries

looked promising. The second experiment is based on analysis of 12 weeks of log

entries from public use of HuskySearch. In this case, we did not know if a particular

user would be looking for information that was at all related to what previous users

were searching for.

6.3.1 User study

We conducted a user study to confirm that the results returned by the CIE indices

are in fact useful to a group of searchers trying to answer five different questions. For

this study, we were interested the following questions:

• Are users able to answer more questions correctly with CIE?

• Are users better able to determine they have the correct answer with CIE?

• Are users able to answer questions faster with CIE?

There were two groups in this user study: a control group that did not use the

CIE indices, and a CIE group which had full access to the four CIE indices. The users

for this study were volunteers from a second-year graduate Library and Information

Science class, nearly all of whom had some experience with searching the Internet.

A few had prior experience with HuskySearch and MetaCrawler. Users were given a

brief tutorial on the system, but because of previous search experience they were not

given an in-depth tutorial on the basics of Web searching.

The students were asked to answer five questions to the best of their ability,

and were told they did not have to spend more than 10 minutes per question. On

143

forms they received, they were to write down the query terms, start and stop time,

how confident they felt in their answer, and any comments or problems they had

using the system. The study was conducted by distributing instructions and forms

to volunteers, who then answered the questions on their own time. The instructions

and forms given to the users is reprinted in Appendix B. Although the volunteers

were divided into two equal groups, not everyone completed and returned the response

form, and some did not provide enough information to be useful for the study. Twenty-

five volunteers completed valid forms, fifteen in the control group and ten in the CIE

group.

The five questions were:

Kevin: What are the three most recent roles Kevin Spacey has played?

Utah: Which Utah ski resort has the highest elevation, and what is it?

Tree: Find a picture of a Fraser fir. Please give the URL.

Can: How many members are there in the Canadian parliament?

MS: What was Microsoft’s IPO price?

These questions were created so that each would have a single correct answer

that was not immediately searchable from the terms in the question. Three of the

questions involved finding a numeric answer, and one involved finding a graphic image.

In addition, the last two questions involved a temporal aspect, although we did not

initially intend for the Can question to have one.

We attempted to order these questions from easiest to answer to most difficult

based on our own experience in finding the answers. This was done to mitigate any

potential bias caused by users learning to use HuskySearch as they worked through

the questions. In addition, the users were all given an initial sample question with

144

Table 6.1: Percentage of users accurately answering each question.

Kevin Utah Tree Can MS

Control 100% (0) 87% (2) 80% (3) 40% (6) 7% (14)

CIE 100% (0) 80% (2) 90% (1) 60% (4) 30% (7)

Numbers in parentheses indicate the number of users that were unable

to answer the question. Note that starting with the Tree question, more

users in the Control group had difficulty answering the question correctly

or at all.

which to learn the system. For each question in the study, users were asked to write

down the answer, starting and stopping time accurate to the minute, their belief in

the correctness of the answer, and the search terms for each query they made to

HuskySearch. Users described their belief in correctness by circling one of “Very

sure,” “Pretty sure,” “Not sure,” or “Didn’t finish.”

Accuracy

To determine whether the CIE users were better able to answer questions correctly,

we compared the percentage of accurate responses in the control and CIE groups.

These percentages are shown in Table 6.1. The two easier questions, Kevin and Utah,

were answered well enough by the base system that the CIE auxiliaries didn’t have

much of an impact either way. The accuracy rate of Group 2 begins to surpass the

control group starting with the Tree question as more people in the Control group

were unable to answer the question correctly or at all. Of note is the MS query.

Because “Microsoft” and “IPO” are such common terms, users were unable to make

much headway using the obvious keywords. However, a few users in the CIE group

commented that they were able to take advantage of previous queries that directed

145

Table 6.2: Uniqueness of queries.

Kevin Utah Tree Can MS

Queries 38 34 31 34 54

Terms / Query 2.95 3.94 2.91 2.76 3.04

Pct. Unique 81.6% 82.4% 80.7% 85.3% 92.6%

This table lists the number of queries submitted across both the CIE

and Control groups, the average terms per query, and the percentage of

queries that are unique. Note that even though there were a large number

of queries which tended to use about three terms, over 80% of the queries

were unique.

them to the proper site. In particular, a user commented that the inclusion of the

term “1986” from a previous query was instrumental in finding the data. Thus, from

this data, it appeared that CIE aided in answering questions not easily answered using

the obvious keyword searches. For the Can question, 20% more users answered the

question correctly, and in the MS question, 27% more users answered the question

correctly.

This example highlights an important aspect of using results documents from

previous queries as indexed documents. In a small group searching for a similar

data, members of the group are able to collaborate by using the queries of others,

even if their own query is unique. Table 6.2 shows the total number of queries, the

percent of unique queries, and the average number of terms per query. Uniqueness is

determined by case insensitive string comparison over the query. Since Web search

engines treat the query “x AND y” differently than the query “y AND x” we consider

those queries unique, even though they would not be in a true Boolean environment.

Even with users trying to answer the same question using between two and four terms,

146

the percentage of unique queries is staggering, at over 80% for each question. This

underscores the benefit for this kind of collaboration in guiding users to queries that

provide useful information.

Confidence

Previous user studies have noticed discrepancies between the number of relevant doc-

uments users thought they had found compared with the actual number of relevant

documents available [34, 103]. We conjectured that since our CIE system would high-

light documents previously found, users would have a more realistic picture of the

correctness of the answer they found. For each question, we asked the user to enter

their confidence in the answer as one of “Very sure,” “Pretty sure,” “Not sure,” or

“Didn’t finish.” For those who were able to answer the question, we converted their

confidence to c having possible values of 0, 0.5, or 1 (corresponding to “Not sure”

through “Very sure”) and compared their confidence in their answer to the actual

correctness of it, a, which was either 0 or 1, via the formula:

Judgment Accuracy = 1− |a− c| (6.7)

This formula evaluates to 1 if they were correct and were “Very sure” or if they were

incorrect and “Not sure,” which is the phenomenon we wanted to measure. These

results are summarized in Figure 6.3.

The data shown indicates that for the first three questions, both control and CIE

users think that they are able to accurately judge their results to the same degree.

However, the Can and MS questions suggest that for the harder questions, CIE users

are both more sure of themselves and are more likely to have a realistic belief in their

results.

147

0%

20%

40%

60%

80%

100%

Kevin Utah Tree Can MS

Ju
dg

m
en

t A
cc

ur
ac

y

Control CIE

Figure 6.3: Accuracy of result judgment.

This figure shows the percentage of time users correctly judged whether

their answer was accurate or not. As shown, CIE users were better able

to judge the correctness of their answer on harder questions.

148

0:00

0:02

0:04

0:06

0:08

0:10

0:12

Kevin Utah Tree Can MS

Ti
m

e
to

 a
ns

w
er

 (H
ou

rs
:M

in
)

Control CIE

Figure 6.4: Time to answer each question (Hours:Min).

As noted, CIE users were able to answer the question faster except for

the Can question. This is due to there being two “official” answers. CIE

users spent additional time to find the correct one.

Speed

In addition to accuracy and confidence, we also measured whether users were able to

answer the questions faster with the CIE system. Users were asked to time themselves,

accurate to the nearest minute, and they were asked to write down comments and their

searches as they went along, so these numbers should be thought of as approximations.

Our findings are summarized in Figure 6.4.

The Kevin and Can questions stand out. The rest suggest a trend that CIE users

are able to answer faster, but the differences aren’t statistically significant. The Kevin

149

question shows that the CIE users were able to find the answer roughly 50% faster

than the control group. This is surprising, as we feel that this is the easiest question

and that CIE won’t contribute that much to its success. However, we observe from the

user comments that many in the CIE group found a Yahoo! Filmography page in the

top few selections; this was caused in part by the ReturnedURLs and ClickedURLs

groups boosting that page’s ranking.

The Can question, regarding the number of members in Canada’s parliament,

was also surprising. Exploring the user’s answers also revealed some confusion as

to the “proper” answer to the question. Several users responded with the correct

answer: 104 in the Senate, 301 in the House of Commons. However, many responded

with 104 in the Senate and 295 in the House, which was the correct number for the

previous year’s Parliament. After a brief search, it became clear that several official

Canadian government pages had not been updated with the new figure. From the

user comments, it appears that several users in the CIE group apparently spent extra

time trying to determine which number was the current and correct number. In this

case, the extra information returned by the CIE system was actually a hindrance, as

it often contained wrong or out-of-date information.

The Can question illustrates a potential downside to our CIE system. If in fact

users find data that is inaccurate, the enhancement method may make it more likely

for future users to also find the inaccurate data. Thus, care must be taken so that

inaccurate or irrelevant index enhancements can be detected and removed.

Multiple queries

On the user form, there were spaces listed for three queries, and users were instructed

to write down information about further queries on the back. Table 6.3 lists the

percentage of time users entered secondary and tertiary queries. Only the MS query,

which went unanswered by the students, had a significant amount of secondary and

tertiary queries. This gives the indication that users make only a single query over

150

Table 6.3: Percentage of users making secondary and tertiary queries.

Secondary Tertiary

Kevin 34.6% 11.5%

Utah 23.1% 7.7%

Tree 15.4% 3.8%

Can 23.1% 7.7%

MS 65.4% 42.3%

Silverstein 22.4% 8.9%

This table shows that users did not often make secondary or tertiary

queries. There were only 4 queries in the entire study that were beyond the

third. This data includes queries from both the Control and CIE groups.

For comparison, we included the findings from Silverstein et al.’s study on

the number of secondary and tertiary queries.

151

50% of the time and try to find the information they require by visiting subsequent

hyperlinks in the returned results. Indeed, many comments from the users indicated

that they spent a fair amount of time “digging” through links. While this phenomenon

is consistent with other findings [100, 64], what is surprising is that the user form had

an inherent bias towards having the users modify their query two or three times, and

yet they still issued only one query.

Significance of user study

While we were pleased with the results of our user study, it should be noted that

the results were not statistically significant. The study comprised only of twenty-

five users split into two groups, and only five questions. It has been argued in the

TREC community that fifty questions are not enough to fully examine a system

[110]. Certainly, the questions were created by the authors, potentially introducing

some bias, and there were other aspects of the study that may have also introduced

some bias, such as the ordering of the questions. However, while flawed, the user

study did provide insight as to how the CIE system would be used by users and how

it could be improved. For a more in-depth study, we now turn to our log analysis.

6.3.2 Log analysis

We demonstrated that CIE is useful in situations where a small group of users are

trying to answer the same set of questions. Next, we evaluate which of the CIE

auxiliaries are useful on a general purpose Web search service, involving a much

larger group of users searching for a wider range of information.

In the ideal case, the CIE auxiliary should only return useful documents. If

a CIE auxiliary returns a document that no other Web search service returned, it

should nevertheless be a useful document. If a CIE auxiliary returns a document

that some Web search service also returns, then it should augment that document’s

rank properly. To determine how well CIE performs these two tasks, we evaluate

152

our CIE auxiliaries again using our Inference of User Value through Real-world Data

methodology described in Section 5.1. However, we need to use slightly different

metrics to determine CIE’s performance.

Open public evaluation of CIE auxiliaries

We incorporated all four CIE auxiliaries into the publicly accessible HuskySearch Web

Search Service [93]. To determine if the auxiliaries were returning useful documents,

we calculated the View Rate for each auxiliary. Let ns be the number of documents

returned by search service s. Let vs be the number of documents returned by search

service s viewed by the user. View Rate is the number of documents viewed by a

user divided by the number of documents returned by a search service, defined by the

following equation:

View Rate of s = vs/ns (6.8)

The View Rates were calculated from logs spanning a twelve-week period starting

Monday, June 1, 1998 through Monday, August 17, 1998. This log is comprised of

92,072 queries and 84,240 viewed documents. Figure 6.5 shows that ClickedURLs is

the most promising auxiliary, while ReturnedURLs is rather poor, with Successful-

ResultsPages being somewhat worse, and ResultsPages having almost no impact what-

soever.

Over the course of the twelve-week evaluation, we received user feedback indicat-

ing that they disliked the way SuccessfulResultsPages and ResultsPages were incor-

porated into the HuskySearch result list. Many users were confused because clicking

on these documents did not lead to a page, but instead executed another search.

This resulted in many users actively avoiding these documents as they did not want

to incur the delay of another search. While there is still potential promise in using

SuccessfulResultsPages and ResultsPages as an alternative method of query expan-

sion, interspersing links to new queries among documents to documents did not appear

153

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

0 2 4 6 8 10 12

Weeks

V
ie

w
 R

at
e

ClickedURLs ReturnedURLs SucResPgs ResPgs

Figure 6.5: View Rate of each CIE auxiliary.

As shown, ClickedURLs is significantly better overall than the other

three CIE auxiliaries.

154

to be a good design choice.

Evaluation of ClickedURLs

Having established that ClickedURLs appeared to be the most promising of the four

auxiliaries, we focused our efforts on evaluating its performance over time. We sought

to answer the following questions:

• Does the View Rate of ClickedURLs improve over time?

• Do the results from the ClickedURLs auxiliary give the user additional docu-

ments the user will view?

• Does the re-ranking effect of ClickedURLs rank viewed documents higher on the

list?

Optimally, to answer these questions we would like to study ClickedURLs in a

large-scale setting, over several months, on a search service that received over a million

queries per day. However, this was not feasible, so we focused on studying the twelve

weeks of logs. In Section 6.3.2 we extrapolate how our results might scale on a large-

scale system.

Given that HuskySearch receives about 1,000 queries per day, we felt that 12

weeks was an adequate period of time to study the effects of ClickedURLs, and that

an additional month or two would not change the results. Manual inspection of the

logs from August 17 through September 30, 1998 supports this decision.

ClickedURLs performance over time

We first sought to determine the ClickedURLs auxiliary’s performance over time. We

calculated the View Rate of ClickedURLs as well as the View Rates for the major

services HuskySearch accessed. Figure 6.6 shows our findings for ClickedURLs as well

155

as three representative Web search services: AltaVista, Excite, and Lycos. The other

services used by HuskySearch all had similar graphs; for readability we present just

these three.

ClickedURLs typically has a lower View Rate than the three search services. How-

ever, while the three services in question vary quite noticeably in their View Rate,

ClickedURLs is relatively constant. It does not increase in performance over time,

but neither does it decrease. Further analysis showed that ClickedURLs returned 0

documents 39.45% of the time and 1-5 documents 20.54% of the time. This indicates

that most queries are diverse enough not to have many matches from the documents

contained within ClickedURLs.

Contributions of ClickedURLs

Each document in ClickedURLs was previously returned from some other search ser-

vice. In more formal terms, if a service E is given query Q1 and returns a document

U that is then viewed, it is added to ClickedURLs. However, a key point is that if

ClickedURLs is given a query Q2 and returns U , it does not hold that E will also

return U if given query Q2. We were interested in measuring how often Clicked-

URLs returned a viewed document when no other service did, and how much of a

contribution those viewed documents made to the overall system. To measure this,

we evaluated the frequency and number of unique documents returned by Clicked-

URLs and viewed by a user. We then compared it with data for the same three

representative services used previously.

To evaluate the effectiveness of ClickedURLs at returning documents viewed by the

user that no other service returned, we evaluate the Unique Contribution of Clicked-

URLs and the three representative services. The Unique Contribution of a service is

defined as the number of unique documents returned by a service that were viewed

divided by the total number of documents that were viewed. Recall from Section 5.1.2

that Ds is the set of documents returned by search service s and Vs is the set of viewed

156

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 2 4 6 8 10 12

Weeks

V
ie

w
 R

at
e

ClickedURLs AltaVista Excite Lycos

Figure 6.6: View Rate for ClickedURLs and 3 representative Web search services.

This graph shows the volatility of global Web search services in terms

of their ability to produce documents that users follow over time, and the

relative consistency of ClickedURLs. It also indicates that even with the

inherent volatility, the other services do have a greater View Rate, indi-

cating that ClickedURLs is unable to produce results that users follow on

many queries.

157

documents from search service s. The Unique Contribution of search service s can be

defined as:

UCs =

∣
∣
∣Vs −

⋃

i6=s Vi

∣
∣
∣

|
⋃

i Vi|
(6.9)

The Unique Contribution strongly correlates with the number of documents returned

by each service, so we also measured the Document Contribution of a service. The

Document Contribution is the number of documents a service returned divided by

the total number of documents returned, as defined by the following equation:

DCs =
|Ds|

|
⋃

i Di|
(6.10)

Finally, we measured the Unique Document Percentage, defined by Equation 5.1

in Section 5.1.2, for each service. For this experiment, there were 84,240 documents

viewed and 10,303,553 documents returned. Table 6.3.2 summarizes our data.

AltaVista had the greatest single Unique Contribution of all global web search

services used. It also had the greatest Document Contribution and UDP . Excite and

Lycos were more representative of the other search services.

ClickedURLs had a very modest unique contribution. However, it also had a very

small Document Contribution, indicating that it is not yet returning many results on

all queries. Roughly half the viewed results returned by ClickedURLs were unique,

indicating that many of the results ClickedURLs contributed were unobtainable using

HuskySearch without the CIE auxiliaries.

Re-ranking effect of CIE

We also evaluated ClickedURLs for its ability to increase the rank of documents that

were viewed by the user. We were especially interested in the non-unique viewed

documents returned by ClickedURLs to determine if their ranking improved.

To determine the re-ranking effect, we measured the Average Rank and Median

Rank of documents viewed by the user. Recall that ns is the number of documents

158

Table 6.4: Additional viewed documents contributed by ClickedURLs and three rep-
resentative services.

Service Unique Contrib Document Contrib UDP

AltaVista 22.68% 13.07% 73.22%

Excite 8.33% 10.38% 43.61%

Lycos 10.40% 12.94% 52.56%

ClickedURLs 1.89% 3.87% 48.75%

As shown, the Unique Contribution, or number of documents viewed

by users contributed only by the one service, is very modest from Clicked-

URLs as compared to the rest. However, this correlates to its Document

Contribution, or total number of documents returned by the service. The

Unique Document Percentage, or UDP, was unique, was in line with the

other services. This suggests that ClickedURLs is providing additional in-

formation of interest to users, and while its numbers are proportionally in

line with the other services, it is still relatively small.

159

returned on a given query by s, and vs the number of documents viewed. Let Cs =

[c1, c2, ...cvs
] be the list of documents returned by search service s viewed by the user.

Let hs(d) be the rank of document d in the results of search service s, ranging from

[0 . . . ns] with 0 being the top rank. The Average Rank of a search service s is then

defined as the average rank of viewed documents:

Average Rank of s =
vs∑

i=1

h(ci)

ns

(6.11)

The Median Rank is similarly defined as the median rank of viewed documents:

Median Rank of s = h(c vs

2

) (6.12)

We compared the Average Rank and Median Rank of all viewed documents con-

tributed by ClickedURLs in addition to the representative search services. Table

6.3.2 shows our findings.

There is little difference in the Average Rank among ClickedURLs and the three

services. However, there is a significant distinction in the Median Rank. ClickedURLs’

Median Rank is half that of the next best service, Excite, and a little more than half

of Lycos. There is a slight bias against AltaVista in that AltaVista returns a more

unique results than Excite, Lycos, and ClickedURLs. Viewed results returned either

uniquely or in part by ClickedURLs do suggest that ClickedURLs re-ranking effect

does present previously viewed information higher on the list. Half of the documents

returned by ClickedURLs that were viewed by users were ranked 0, 1, or 2. In

comparison, half of the documents returned by Excite that were viewed were ranked

from 0 to 4, the documents from Lycos were ranked from 0 to 5, and the documents

from AltaVista were ranked from 0 to 7. This indicates that at least half of the time

users are not looking through as many results before clicking on references returned

by ClickedURLs.

160

Table 6.5: Average Rank, Median Rank, and standard deviation for viewed docu-
ments.

Service Average Rank Median Rank Std Dev

AltaVista 16.147 7 24.652

Excite 15.599 4 26.740

Lycos 15.333 5 25.804

ClickedURLs 15.682 2 32.180

This table shows the Average Rank and Median Rank, as well as the

standard deviation, for viewed documents, with 0 being the rank of the

first entry in a ranked relevancy list. ClickedURLs has a significantly lower

Median Rank than the other three, indicating users are not looking through

as many results before clicking on references returned by ClickedURLs.

Performance over time for CIE systems on a large scale

One question concerning a CIE system on a general Web service is whether or not

enough people are looking for similar information to make it worthwhile. Our current

numbers, especially our figures regarding the View Rate of ClickedURLs, indicate

that 84,240 viewed URLs over twelve weeks does not make a significant contribution

to the results viewed by the user.

Since it was not feasible for us to run the CIE system on a large-scale web system,

we estimated an upper bound on how well an ideal CIE system might perform over

time. We define an ideal CIE system as one that for every document a user views,

the ideal CIE system returns that document if a previous user viewed it. Naturally,

this ideal CIE system will only be able to provide benefit to a user when the user

viewed documents that other users previously viewed. Thus, an upper bound on an

161

ideal CIE system’s performance is the probability that a URL that a user viewed had

been seen previously.

To calculate this estimate, we obtained a week’s worth of logs from the commercial

MetaCrawler service [44] containing URLs that users had followed as a result of a

search. This came to roughly 7.2 million documents. To estimate the upper bound,

we sorted the 7.2 million documents according to the time they were viewed by a user,

and then divided them into 72 partitions p0 . . . p71, each containing 100,000 documents

We then calculated the Cumulative Overlap Percentage for each partition pi, or COP i,

which is the percent of documents in pi that were also in p0 . . . pi−1, defined by:

COP i =

∣
∣
∣
∣
∣
∣

pi ∩
i−1⋃

j=0

pj

∣
∣
∣
∣
∣
∣

|pi|
(6.13)

The plot of COP for each partition is found in Figure 6.7. As shown, after 1 million

documents have been seen, roughly 30% of the URLs in the following 100,000 will

have previously been seen. After 3 million it rises to about 40%, and after 6 million

50%. The log analysis presented in this chapter contained only 84,240 viewed results,

which means we should have been able to enhance fewer than than 5% of the incoming

queries. In reality, only 0.22% of the final 1,000 documents were present in the initial

83,240, which is consistent with our numbers.

Although we were unable to test if ClickedURLs or any of the CIE prototypes

we developed would be effective at a large scale, this experiment does indicate that

some CIE system would be applicable for over half the queries of a general purpose

Web search system. Thus, we believe CIE is not just applicable to small domains,

but could provide benefit to a large scale, million-user Web search service.

6.4 Summary

We presented Collaborative Index Enhancement, a model for enhancing a searchable

index based on the experience of previous users. The key idea behind CIE is to take

162

0%

10%

20%

30%

40%

50%

60%

0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1 6.5 6.9

Pages (millions)

C
um

ul
at

iv
e

O
ve

rl
ap

 P
er

ce
nt

ag
e

Figure 6.7: Cumulative Overlap Percentage through 7.2 million documents.

This chart shows that after 1 million documents have been seen, about

30% of the next 100,000 will have been seen before. After 6 million, about

50% of the next 100,000 will have been seen previously.

the results document from a query and feed it back into the source index or indices in

some manner. We demonstrated a prototype system based on the HuskySearch search

service that implements CIE using auxiliary search indices. This implementation

allows us to use and experiment with several different CIE methods at once, without

the need to modify or even control the original Web indices we use.

In order to validate that CIE is a useful addition to HuskySearch, we conducted a

series of experiments based on a user study and log analyses. Our user study indicates

that CIE is beneficial and suggests that CIE aided users in answering harder questions

as well as in speeding up their answering of easier questions. In one case the time

163

required to answer a question was decreased by over 50%, and in another case 27%

more users were able to answer a hard question correctly. The results also suggest

that CIE users were also better able to correctly judge the quality of their answer for

harder questions.

In our log analyses, we focused on ClickedURLs, the most promising of the four

auxiliaries. We showed that it had a consistent View Rate over time, rather than

a volatile one similar to traditional Web search services, though ClickedURLs’ View

Rate was generally lower than the traditional Web search services. We showed that

roughly half of the viewed documents returned by ClickedURLs were unique. We

showed that previously viewed documents returned by ClickedURLs had an improved

Median Rank over those not returned by ClickedURLs. Finally, even though the

overall contribution of CIE on HuskySearch was rather modest, we demonstrated

that on a large scale system, after a short period of time over 50% of the documents

viewed had been viewed in a previous session. This shows that there is potential for

some CIE system to be of benefit in a large scale system.

These results suggest that CIE is a useful addition to HuskySearch, and promises

to provide additional benefit over a long duration. To our knowledge, this is the first

experimental evaluation of any indirect collaboration method applied to the Web.

Selecting documents for an index is now almost entirely automatic for large-scale

systems. As large-scale systems continue to grow, it becomes more difficult to separate

relevant documents from the irrelevant ones. CIE is one method that can help alleviate

this problem by letting users transparently contribute information that can help other

users find relevant documents quickly.

164

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

The Web Search Problem is the problem of locating all available Web documents

which are relevant to a given query. Web search services have addressed this problem

through the collection of Web documents via a spider and the subsequent indexing

of those documents. This technique effectively enables millions of users to find infor-

mation on the Web. However, due to the real-world constraints, spider-based search

services are unable to provide a complete solution to the Web Search Problem. In

our experiments, as well as experiments performed by other groups, no single Web

search service provides a comprehensive Web search. Meta-search provides a better

solution to the Web Search Problem by combining multiple search services and thus

providing a more comprehensive search.

This thesis investigated meta-search to answer four questions: can meta-search

be implemented in a practical manner? Does meta-search contribute significantly to

comprehensive Web search? Is it likely that meta-search will continue to contribute

significantly to comprehensive Web search? Can results provided by meta-search

improve over time through user interaction? We answered these questions by design-

ing and implementing two meta-search services, MetaCrawler and HuskySearch, and

conducting experiments to ascertain their capabilities.

165

7.1.1 Practical implementation of meta-search

We designed and implemented MetaCrawler with two goals in mind. The first goal

was to demonstrate that meta-search could be implemented in a manner such that

average Web users would take advantage of meta-search’s benefits. The second goal

was to demonstrate that a meta-search service could be provided and maintained

with limited resources. To address these goals, we developed an architecture for

implementing a meta-engine that is expandable, has a low maintenance cost, has a

fast response time, is scalable, and is portable.

In implementing MetaCrawler using our architecture, we were faced with several

challenges. First and foremost, MetaCrawler needed to return results to users quickly.

MetaCrawler also needed to consume as few system resources as possible in order to

maximize the utilization of a single server handling multiple queries. Therefore, we

implemented MetaCrawler’s retrieval engine using non-blocking I/O and a network of

finite state machines. This enabled a single MetaCrawler process to simultaneously

retrieve 4,093 documents from the Web, which is a limit imposed by the operating

system. In contrast, the most common implementation of parallel Web retrievals is

using threads. Using threads, we were only able to retrieve a maximum of 1,027 Web

documents simultaneously across all processes.

Users were also attuned to the quality of results that contemporary Web search

services returned. Therefore, MetaCrawler needed to collate the documents from

heterogeneous services in a reasonable manner, ensuring that there were no obvious

errors, such as the inclusion of duplicate documents. Collating results from hetero-

geneous search services is not trivial. We developed the Normalize-Distribute-Sum

algorithm to collate documents from heterogeneous services given limited information

about each document. We also developed two heuristics, the Redirect Heuristic and

the Mirror Heuristic, to identify duplicate documents.

MetaCrawler’s architecture facilitated both easy expansion and maintenance. This

166

was necessary because MetaCrawler was maintained by graduate students with lim-

ited time. The architecture’s modular nature allows the straightforward incorporation

of extensions to MetaCrawler, as well as allowing applications built on top of Meta-

Crawler, such as Grouper and Ahoy!. Furthermore, by isolating the functionalities

require the most maintenance into their own modules, maintenance is both straight-

forward and quickly accomplished.

7.1.2 Significant contribution of meta-search

In Chapter 5 we determined the contribution of meta-search through the evaluation

of MetaCrawler and the Web search services it uses through Inference of User Value

through Real-world Data. We did this by observing user queries and by logging

the documents that each search service returned, as well as which documents users

followed. We then analyzed this information.

We demonstrated in two separate studies that each Web search service produces

a largely unique set of results for a given query. Furthermore, each of the Web search

services provide documents that users view. This was also independently confirmed

through several other studies. We then demonstrated that each Web search service

contributed a significant percentage of the total results returned by all search services.

Furthermore, we demonstrated that each Web search service contributed a significant

percentage of the total viewed documents. Therefore, combining multiple search

services does provide a significantly more comprehensive search of the Web.

7.1.3 Longevity of meta-search

Having determined that combining multiple Web search services provides a signifi-

cantly more comprehensive Web search, we then demonstrated that meta-search will

likely continue to provide a significant benefit in the future. We first extrapolated an

upper bound on the growth of the largest Web search services. Then we constructed

two trends based on statistical estimates of the size and growth of the Web. We

167

observed that even the lower estimate of Web growth is larger than the upper bound

on growth of the Web search services.

The upper bound on the growth of the Web search services is a flat rate equal

to their largest single-month improvement. Historical data shows that Web search

services increase the size of their indices at irregular intervals. This is because the

indices are at the limit of the available resources, and quickly consume new resources

as they become available. Since the cost of adding storage and servers is not trivial,

resources are added intermittently.

One trend showing Web growth is based on the interpolation of three estimates on

the size of the Web. An estimate of the size of the Web is calculated by estimating the

probability that a document in index B was in index A and B, e.g. P (A∩B|B). The

size of the Web is then estimated by dividing the size of index A by this probability.

A trend based on three estimates calculated in this manner indicates the Web doubles

every nine months. The other trend showing Web growth is based on the growth of

Web servers. The number of available Web servers has been doubling every twelve

months.

The lower estimate of Web growth is that the Web doubles every twelve months.

This is greater than the upper bound on the growth of Web search service indices.

Furthermore, based on the estimates of the size of the Web, even if the top three

Web search service indices were completely disjoint, their combined total would not

equal that of the size of the Web at the time of this writing. Thus, meta-search will

continue to provide significant benefit in the future.

7.1.4 Stable search

We observed that eight of the nine major Web search services produced unstable

results. We observed that over a third of the documents returned in the Top 10

results of five out of nine services were absent from the results of the same query

submitted at a later time, only to reappear in the results of a subsequent submission.

168

Three of the remaining four services also exhibited this behavior to a lesser degree.

We presented Collaborative Index Enhancement, a model that generalizes en-

hancement of an index through indirect collaboration. We showcased four different

instantiations of CIE. We evaluated the merits of these four instantiations using both

a user study and a log analysis conducted in a manner similar to our evaluation of Web

search services. Two of these instantiations, ReturnedURLs and ClickedURLs, pro-

vide a means of addressing the problem of instability in the Web search services. The

other two methods provide a query history and a convenient form of query expansion.

While ClickedURLs provided modest improvement in HuskySearch, we observed

through logs of the commercial MetaCrawler service that after roughly six million

documents have been viewed by users, half of the documents viewed have been viewed

previously. This indicates that at large scale there is a strong potential for user

interaction to improve the results of searching over time.

7.2 Future work

7.2.1 Qualitative analysis

In Section 3.1.4 we described two claims that we could make of MetaCrawler. The

first claim was that because MetaCrawler retrieved the top k documents from each

search service and then collated them, the top k documents MetaCrawler returned

would contain higher quality documents than the top k from any single search service.

The second claim was that on average a user could locate relevant information faster

by using MetaCrawler instead of using each search service directly. While practical

experience indicates that these claims are true, we did not evaluate these claims

scientifically. Obvious future work would be to evaluate these claims, determining

how much better, if at all, results from meta-search are to any search service, and to

determine how much faster, if at all, users can locate information using meta-search.

Such work would also likely involve significant exploration into different collation and

169

ranking algorithms, similar to the work done on traditional Information Retrieval

search engines [34].

7.2.2 Improving inference of user value

Our methodology to measure the performance of search services, Inference of User

Value through Real-world Data, depends on some measurable quality from which we

can infer user value. As we discussed in Section 5.1.1, using viewed documents as a

measure of usefulness is only upper bound. A tighter measurement would allow a much

more insightful evaluation, both in terms of evaluating the usefulness of each search

service as well as in constructing and evaluating Collaborative Index Enhancement

auxiliaries. One method of obtaining a better measure would be to ask users after

they have read a document whether it is relevant to their query. Asking users in the

right way is an issue in itself, but that has been reasonably well studied in Information

Retrieval literature [39]. Assuming users give actual relevance information, various

models could be constructed to give a better measure on whether a document is

actually relevant to a query. In particular, various document attributes may affect

its likelihood of being relevant, such as its rank, the amount of time a user views the

document, the number of documents the user has viewed in the results prior to the

current document, and so on.

7.2.3 Query routing

One area of meta-search which we did not explore in any great depth was scaling

MetaCrawler and HuskySearch to handle a large number of Web search services.

Most Web search services are either topic-specific or region-specific, such as the CBS

SportsLine search [22] or Jubii, a search service for Denmark [54]. While integrating

additional search services into the Harness module is not difficult, MetaCrawler’s

broadcast mechanism could put an undue load on the specialty services it accessed

by querying them with off-topic queries.

170

One technology that addresses the selection of search services is query routing.

There has already been significant work in the field of query routing. Sheldon et

al. experimented with query routing using Wide Area Information Servers, or WAIS

[55] search platform [98]. Their system, Discover, creates content labels for each

WAIS site. A feature of the WAIS system is that the keys of the searchable index

are retrievable; thus the content labels are based on the keys of the remote index.

To route queries, Discover simply determines which content labels contain the query

terms via an inverted index.

The GLOSS system [46] works in a similar fashion to Discover, although it uses

a probabilistic model to route queries. Rather than describing an index by its keys,

GLOSS creates a histogram of the keys in an index. GLOSS then uses a probabilistic

model with the histogram to rank the indices based on how many documents they

are likely to return given the appropriate query.

Atsushi Sugiura is currently conducting an exploration into query routing using the

CIE framework [104]. Several documents retrieved from the available search services

are inserted into a CIE auxiliary. To route queries, the query is first issued to the

CIE auxiliary. The search services that originally returned the documents found in

the auxiliary are then queried directly.

7.2.4 Alternative instances of CIE

Our CIE system is still in early development, and there is a great deal of future work

that can be done. More sophisticated CIE indices should be explored and evaluated.

One direction worth pursuing is to expand the ReturnedURLs and ClickedURLs to

include “close pages,” such as all pages three links away from a page a user clicked

on. Also, an improved user interface might make the SuccessfulResultsPages and

ResultsPages auxiliaries more appealing and useful to users.

While we have the infrastructure to address the scaling issues that will arise af-

ter a million or more queries have been submitted, evaluation on the actual scaling

171

mechanisms and parameters still needs to be done.

The question of the portability of CIE is still open. It is unclear if CIE would be

of benefit in a traditional IR environment. Effort should be made to explore using

non-Web search systems as the basis for CIE.

Finally, more exhaustive testing of CIE auxiliaries are also in order. The results

presented in this chapter are promising, but the systems do need further evaluation.

Of particular note would be to investigate whether the CIE documents not viewed

by users significantly impede users from finding information by cluttering the results

with irrelevant documents.

7.2.5 Beyond HTML

This thesis focused on searching for relevant Web HTML documents. However, while

the majority of Web content is comprised of HTML documents, there are numerous

other document types available. In particular, there are a wide variety of text doc-

uments written in formats besides HTML, such as Postscript, Portable Document

Format (PDF), Rich Text Format (RTF), and so on. There has been some work on

including alternative formats. For example, the Harvest system includes a component

that converts known document types into a Summary Object Interchange Format, or

SOIF, document [14]. However, properly parsing text documents written in other

formats than HTML is not that challenging.

A task that is challenging is integrating non-text formats into a single searchable

interface. For example, Lycos has incorporated a search feature which allows users

to search for audio files encoded in the MP3 audio file format. However, this feature

requires its own separate search form [70]. Other search services also have indices for

other media, such as pictures and videos. An additional user interface challenge is to

allow for the user to query using more than just keywords. For example, many image

search engines locate images similar to other images [10].

Even within HTML, different types of files exist. Treating these different files types

172

as different files rather than plain HTML files could lead to significant improvement

in the quality of search results. For example, while it would not be difficult to include

a USENET search service, such as DejaNews [29], in HuskySearch, it is not clear that

the incorporation of USENET news articles and normal Web documents in a single

list would be understood by average Web users.

7.2.6 Information integration

The Information Integration Problem is the problem of finding information available

in whole or part from a variety of databases. This is a similar problem to the Web

Search Problem. However, rather than attempting to find existing Web documents

that contain relevant information, the Information Integration Problem focuses on

locating information that matches a specific query through multiple databases.

The Tukwila system is one such project exploring the Information Integration

Problem [53]. In the Tukwila system, a mediated schema is constructed for a given

domain. A mediated schema is a list of attributes that describe individual entities

in the domain. Users can then issue queries over the mediated schema. Queries in

this context are a list of possible values for some or all of the fields in the mediated

schema.

The Tukwila system integrates a number of online databases by transforming

the output of a database into a format that can be mapped to attributes in the

mediated schema. Currently, a human expert needs to construct this mapping, but

there is ongoing work to reduce the need for a human expert through the use of

machine learning [32]. The main problem in this area is in mapping attributes labeled

differently, but that have the same semantic meaning. Tukwila also requires that the

online database return structured data, or data presented in a static format. There

is also ongoing work to extend Tukwila to use semi-structured data. Many online

databases are moving towards outputting their results using a self-describing semi-

structured data format, such as the Extensible Markup Language, XML [18]. The

173

advantage in using self-describing semi-structured data is that information can be

easily exchanged without the need to construct custom wrappers. The difficulty with

using self-describing data is in understanding the description, which is not guaranteed

to adhere to any standard.

7.2.7 Outside the box

The goal of the Internet Softbot was for users to say what they wanted, and the

Softbot would figure out where to get it and how to get it [36]. MetaCrawler explored

this concept in the Web domain by enabling users to describe the information they

wanted based on keywords. However, while retrieving all of the relevant information

to a given query can address a user’s immediate information need, it is most likely only

a partial solution to the user’s actual problem. A keyword query may convey what

information a user wants, but does not convey why a user wants that information

nor what the user intends to do with it. For example, consider two people, one living

in Salt Lake City, the other in Seattle. They may both issue the query “Utah Jazz

schedule” looking for a document that contains the game schedule of the Utah Jazz

basketball team. However, the person who lives in Salt Lake City may be looking for

the next Jazz game in Utah, whereas the person in Seattle may be looking for the

date when the Jazz play in Seattle.

There has been some work on enabling users to better describe what they want.

Natural language processing can be applied to interpret a natural language question

that better describes what the user wants. For example, the commercial service Ask

Jeeves! enables users to enter a natural language question, such as “When is the

next Utah Jazz home game?” [4]. Unfortunately, it does not immediately return the

answer, but rather returns a number of other queries that may lead to the answer.

One of the example queries Ask Jeeves! returned in response to the above question

is, “Where can I locate current schedules for the NBA team Utah Jazz?” A more

subtle approach is the implicit query project [25]. Rather than requiring a user to

174

use a search service to find information, the application a user is currently interacting

with issues an implicit query based on heuristics of when a user requires additional

information. The implicit query is constructed from the context of the application.

In this way, the application can provide the user with needed information when it is

needed.

In addition to the problem of determining what the user wants, there are many

open problems that must be addressed in order to construct a general purpose service

where a user can describe what he or she wants and have the service return useful and

relevant information. The Web Search Problem and Information Integration Problem

are just two problems which need to be addressed in order to provide the user with

the information they desire. Meta-search certainly provides a partial solution to the

Web Search Problem, but the problem is far from solved.

175

BIBLIOGRAPHY

[1] David Aha. David Aha’s List of Machine Learning and Case-Based Reasoning

Home Pages, 1996.

http://www.aic.nrl.navy.mil/~aha/people.html.

[2] Apple Computer, Inc. Sherlock, 1998.

http://www.apple.com/sherlock/.

[3] Apple Donuts. Apple Donuts Sherlock Plugins, 1999.

http://www.apple-donuts.com.

[4] Ask Jeeves, Inc. Ask Jeeves!, 1999.

http://www.ask.com.

[5] Gauruv Banga and Jeffrey Mogul. Scalable kernel performance for internet

servers under realistic loads. In Proceedings of the USENIX Annual Technical

Conference (NO 98), New Orleans, June 1998. USENIX.

[6] J. M. Barrie and D. E. Presti. The World Wide Web as an Instructional Tool.

Science, 274(5286):371, October 1996.

[7] N. J. Belkin, P. Kantor, C. Cool, and R. Quatrain. Combining Evidence for

Information Retrieval. In Donna Harman, editor, TREC-2, Proceedings of the

Second Text REtrieval Conference. NIST Special Publication 500-215, 1993.

[8] N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw. Combining the Evidence

of Multiple Query Representations for Information Retrieval. Information Pro-

cessing & Management, 31(3):431–448, 1995.

176

[9] Nicholas J. Belkin and W. Bruce Croft. Retrieval Techniques. In Martha E.

Williams, editor, ARIST, volume 1, chapter 4, pages 109–145. Information To-

day, Inc., 1987.

[10] Andrew Berman. Efficient Content-Based Retrieval of Images using Triangle-

Inequality-Based Algorithms. PhD thesis, University of Washington, 1999.

[11] Andrew Berman, Virgil Bourassa, and Erik Selberg. TRON: Process-Specific

File Protection for the UNIX Operating System. In Proceedings of the 1995

Winter USENIX Conference, New Orleans, LA, Jan 1995. USENIX.

http://www.cs.washington.edu/homes/speed/papers/tron/tron.ps.gz.

[12] Krishna Bharat and Andrei Broder. A Technique for Measuring the Relative

Size and Overlap of Public Web Search Engines. In Proceedings of the 7th World

Wide Web Conference, Brisbane, Australia, August 1998.

[13] Krishna Bharat and Andrei Broder. Measuring the Web.

http://www.research.digital.com/SRC/whatsnew/sem.html, 1998.

[14] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and

Michael F. Schwartz. Harvest: A Scalable, Customizable Discovery and Access

System. Technical Report CU-CS-732-94, Department of Computer Science,

University of Colorado, Boulder, Colorado, March 1995.

http://harvest.cs.colorado.edu/harvest/papers.html.

[15] Christin Boyd. Interactive query refinement tool for the huskysearch web search

service. Senior Honors Thesis. University of Washington, Department of Com-

puter Science and Engineering, 1997.

[16] David Brake. Lost in cyberspace. New Scientist, June 1997.

http://www.newscientist.com/keysites/networld/lost.html.

177

[17] T. L. Brauen. Document Vector Modifications in the SMART Retrieval Sys-

tem. In The SMART Retrieval System: Experiments in Automatic Document

Processing. Prentice-Hall, Englewood Cliffs, NJ:, 1971.

[18] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup lan-

guage (xml) 1.0. W3C Recommendation, February 1998.

http://www.w3.org/TR/REC-xml.

[19] Eric Brewer. The HotBot Search Engine [talk only]. In Proceedings of the

American Library Association 1997 Annual Conference, San Francisco, CA,

June 1997.

[20] Andrei Broder. On the resemblance and containment of documents. In

Compression and Complexity of Sequences (SEQUENCES’97), pages 21–29.

IEEE Computer Society, 1998.

ftp://ftp.digital.com/pub/DEC/SRC/publications/broder/-

positano-final-wpnums.pdf.

[21] James Callan, Zhihong Lu, and Bruce Croft. Searching Distributed Collections

with Inference Networks. In Proceedings of the 1995 ACM SIGIR Conference,

Seattle, WA, July 1995. ACM Press.

[22] CBS Inc. CBS SportsLine Search Center, 1999.

http://cbs.sportsline.com/u/spmenu.htm.

[23] J. Cohen and S. Aggarwal. General event notification architecture base. Internet

Draft, 1998.

http://search.ietf.org/internet-drafts/draft-cohen-gena-p-base-01.txt.

[24] Compaq Corporation. About AltaVista, 1999.

178

http://www.altavista.com/av/content/about our technology 2.htm-

#equipment.

[25] Mary Czerwinski, Susan Dumais, George Robertson, Susan Dziadosz, Scott

Tiernan, and Maarten van Dantzich. Visualizing Implicit Queries for Infor-

mation Management and Retrieval. In Proceedings of the 1999 ACM SIGCHI

Conference on Human Factors in Computing Systems, Pittsburgh, PA, 1999.

ACM Press.

[26] Mark Day. Simple general awareness protocol. Internet Draft, 1998.

http://search.ietf.org/internet-drafts/draft-day-sgap-01.txt.

[27] P. De Bra, G. J. Houben, Y. Kornatzky, and R. Post. Information Retrieval in

Distributed Hypertexts. In RIAO ’94: Intelligent Multimedia Retrieval Systems

and Management, New York, NY, October 1994.

[28] Paul De Bra and R. D. J. Post. Searching for Arbitrary Information in the

World Wide Web: the Fish-Search for Mosaic. In Proceedings of the 2nd World

Wide Web Conference, Chicago, IL USA, October 1994.

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/debra/-

article.html.

[29] DejaNews Research Service. DejaNews Home Page, 1996.

http://www.dejanews.com.

[30] Digital Equipment Corporation. Alta Vista Home Page, 1996.

http://www.altavista.digital.com.

[31] Direct Hit Inc. Direct Hit Homepage, 1998.

http://www.directhit.com.

179

[32] AnHai Doan. Personal Communication, May 1999.

[33] Derek L. Eager and John Zahorjan. Chores: Enhanced run-time support for

shared-memory parallel computing. ACM Trans. on Computer Sys, 11(1):1–32,

February 1993.

[34] Efthimis Efthimiadis. Interactive Query Expansion and Relevance Feedback for

Document Retrieval Systems. PhD thesis, City University, London, 1992.

[35] EINet. Galaxy Home Page, 1995.

http://galaxy.einet.net/galaxy.html.

[36] O. Etzioni and D. Weld. A softbot-based interface to the internet. CACM,

37(7):72–76, July 1994.

http://www.cs.washington.edu/research/softbots.

[37] Excite, Inc. Excite Home Page, 1995.

http://www.excite.com.

[38] Excite Inc. Excite reports fourth quarter and total year financial results. Press

Release, January 1999.

http://www.corporate-ir.net/ireye/ir site.zhtml?-

ticker=XCIT&script=410&layout=7&item id=17946.

[39] Raya Fidel and Michael Crandall. Users’ Perception of the Performance of a

Filtering System. In Proceedings of the 1997 ACM SIGIR Conference, pages

198–205, Philadelphia, PA, July 1997. ACM Press.

[40] David Filo and Jerry Yang. Yahoo Home Page, 1995.

http://www.yahoo.com.

180

[41] FireFly Networks Inc. The FireFly Home Page, 1996.

http://www.firefly.net.

[42] Larry Fitzpatrick and Mei Dent. Automatic Feedback Using Past Queries:

Social Searching? In Proceedings of the 1997 ACM SIGIR Conference, pages

306–312, Philadelphia, PA, July 1997. ACM Press.

[43] Susan Gauch, Guijun Wang, and Mario Gomez. ProFusion: Intelligent Fusion

from Multiple, Distributed Search Engines. Journal of Universal Computing,

2(9), Sept 1996.

http://www.ittc.ukans.edu/~sgauch/papers/JUCS96.ps.

[44] Go2Net, Inc. MetaCrawler Home Page, 1997.

http://www.metacrawler.com.

[45] Google, Inc. The Google Home Page, 1999.

http://www.google.com.

[46] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. The Effectiveness

of GlOSS for the Text Database Discovery Problem. In Proceedings of the 1994

ACM SIGMOD Conference, pages 126–137, Minneapolis, MN, May 1994. ACM

Press.

ftp://db.stanford.edu/pub/gravano/1994/stan.cs.tn.93.002.sigmod94.ps.

[47] Adele Howe and Daniel Dreilinger. SavvySearch: A Meta-Search Engine that

Learns Which Search Engines to Query. AI Magazine, 18(2), summer 1997.

http://daniel.www.media.mit.edu/people/daniel/papers/ss-aimag.ps.gz.

[48] HTTP Working Group. Hypertext transfer protocol – http/1.1. Internet Draft,

November 1998.

http://www.w3.org/Protocols/History.html#Rev06.

181

[49] InfoSeek Corporation. InfoSeek Home Page, 1995.

http://www.infoseek.com.

[50] Inktomi, Inc. HotBot Home Page, 1996.

http://www.hotbot.com.

[51] Inktomi, Inc. Inktomi Home Page, 1996.

http://www.inktomi.com.

[52] Internet Archive, Inc. The Internet Archive, 1998.

http://www.archive.org.

[53] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S.

Weld. An adaptive query execution system for data integration. In Proceedings

of SIGMOD Conference on Management of Data, Philadelphia, PA, USA, June

1999.

[54] Jubii Ltd. Jubii Homepage, 1999.

http://www.jubii.dk.

[55] B. Kahle and A. Medlar. An information system for corporate users: Wide Area

Information Servers. Technical Report Technical Report TMC-199, Thinking

Machines Inc., April 1991. Version 3.

[56] Colleen Kehoe and Jim Pitkow. GVU’s Tenth WWW User Survey Report. Office

of Technology Licensing, Georgia Tech Research Corporation, 1999.

http://www.gvu.gatech.edu/user surveys/survey-1998-10/.

[57] Rohit Khare and Adam Rifkin. Scenarios for an internet-scale event notification

service (isens). Internet Draft, 1998.

182

http://search.ietf.org/internet-drafts/draft-khare-notify-scenarios-

-01.txt.

[58] J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl. Grou-

pLens: Applying Collaborative Filtering to Usenet News. Communications of

the ACM, 40(3):77–87, 1997.

http://www.acm.org/pubs/citations/journals/cacm/1997-40-3/p77-konstan.

[59] Martijn Koster. Robots in the Web: threat or treat? ConneXions, 9(4), April

1995.

[60] N. Kushmerick. Wrapper Induction for Information Extraction. PhD thesis,

Univ. of Washington, 1997.

[61] N. Kushmerick. Regression testing for wrapper maintenance. In Proceedings of

the Sixteenth National Conference on Artificial Intelligence, Orlando, Florida,

July 1999. Menlo Park, Calif.: AAAI Press.

[62] Brian A. LaMacchia. The Internet Fish Construction Kit. In Proceedings of the

6th World Wide Web Conference, pages 277–288, Santa Clara, CA, April 1997.

[63] Tessa Lau, Oren Etzioni, and Daniel S. Weld. Privacy interfaces for information

management. Technical Report UW-CSE-98-02-01, University of Washington,

March 1998.

[64] Tessa Lau and Eric Horvitz. Patters of search: Analyzing and modeling web

query refinement. In Proceedings of the 1999 User Modelling Conference, 1999.

To appear.

[65] Gregory Lauckhart. Work done as research programmer. University of Wash-

ington, Department of Computer Science and Engineering, 1996.

183

[66] Steve Lawrence and C. Lee Giles. Searching the World Wide Web. Science,

280:98–100, April 1998.

[67] H. Lieberman. Letizia: An agent that assists web browsing. In Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence, pages

924–929, 1995.

[68] Jong-Gyun Lim. Using Coollists to Index HTML Documents in the Web .

In Proceedings of the 2nd World Wide Web Conference, Chicago, IL USA,

October 1994.

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/lim/-

coollist.html.

[69] Lycos Inc. Lycos Home Page, 1999.

http://www.lycos.com.

[70] Lycos Inc. Lycos MP3 Search, 1999.

http://mp3.lycos.com.

[71] Michael L. Mauldin and John R. R. Leavitt. Web Agent Related Research at

the Center for Machine Translation. In Proceedings of SIGNIDR V, McLean,

Virginia, August 1994.

[72] Max Metral. Helpful Online Music Recommendation Service, 1995.

http://rg.media.mit.edu/ringo/ringo.html.

[73] Henrik Frystyk Neilsen. Libwww - the w3c protocol library, 1995.

http://www.w3.org/Library/.

[74] Netcraft. Netcraft Web Server Survey, 1999.

http://www.netcraft.com/survey.

184

[75] Netscape, Inc. An Exploration of Dynamic Documents, 1995.

http://home.netscape.com/assist/net sites/pushpull.html.

[76] Netscape Inc. Introduction to SSL, 1996.

http://developer.netscape.com/docs/manuals/security/sslin/index.htm.

[77] Open Text, Inc. Open Text Web Index Home Page, 1995.

http://www.opentext.com:8080/omw/f-omw.html.

[78] M. Perkowitz and O. Etzioni. Category translation: Learning to understand

information on the Internet. In Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence, pages 930–6, 1995.

[79] Brian Pinkerton. Finding What People Want: Experiences with the Web-

Crawler. In Proceedings of the 2nd World Wide Web Conference, Chicago, IL

USA, October 1994.

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/pinkerton/-

WebCrawler.html.

[80] Brian Pinkerton. WebCrawler Home Page, 1995.

http://webcrawler.com.

[81] Brian Pinkerton. Personal Communication, March 1999.

[82] PlanetSearch Network Inc. PlanetSearch Home Page, 1998.

http://www.planetsearch.com.

[83] Quarterdeck, Inc. WebCompass Home Page, 1996.

http://www.qdeck.com/qdeck/demosoft/webcompass live.

185

[84] Vijay V. Raghavan and Hayri Sever. On the Reuse of Past Optimal Queries. In

Proceedings of the 1995 ACM SIGIR Conference, pages 344–350, Seattle, WA,

July 1995. ACM Press.

[85] Eric J. Ray, Deborah S. Ray, and Richard Seltzer. The AltaVista Search Revo-

lution. Osborne McGraw-Hill, second edition, 1998.

[86] Surendra Reddy. Requirements for event notification protocol. Internet Draft,

1998.

http://search.ietf.org/internet-drafts/draft-skreddy-enpreq-00.txt.

[87] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-

taining digital signatures and public-key cryptosystems. Communications of the

ACM, 21(2):120–126, 1978.

[88] G. Salton and M. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.

[89] Gerard Salton, editor. The SMART Retrieval System: Experiments in Auto-

matic Document Processing. Prentice Hall, Englewood Cliffs, NJ, 1971.

[90] Darren Schack. Senior honors thesis. University of Washington, Department of

Computer Science and Engineering, 1996.

[91] Michael F. Schwartz, C. Mic Bowman, Peter B. Danzig, Darren R. Hardy,

and Udi Manber. The Harvest Information Discovery and Access System .

In Proceedings of the 2nd World Wide Web Conference, Chicago, IL USA,

October 1994.

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/-

schwartz.harvest/schwartz.harvest.html.

186

[92] Erik Selberg and Oren Etzioni. Multi-Service Search and Comparison Using

the MetaCrawler. In Proceedings of the 4th World Wide Web Conference, pages

195–208, Boston, MA USA, December 1995.

http://huskysearch.cs.washington.edu/papers/www4/html/Overview.html.

[93] Erik Selberg and Oren Etzioni. HuskySearch Home Page, 1997.

http://huskysearch.cs.washington.edu.

[94] Erik Selberg and Oren Etzioni. The MetaCrawler Architecture for Resource

Aggregation on the Web. IEEE Expert, 12(1):8–14, January 1997.

[95] Erik Selberg and Oren Etzioni. Experiments in Collaborative Index Enhance-

ment. Technical Report UW-CSE-98-06-01, Department of Computer Science

and Engineering, University of Washington, Seattle, WA, June 1998.

http://www.cs.washington.edu/homes/speed/papers/cqp/cqp.ps.

[96] J. Shakes, M. Langheinrich, and O. Etzioni. Dynamic reference sifting: a case

study in the homepage domain. In Proc. 6th World Wide Web Conf., 1997. See

http://www.cs.washington.edu/research/ahoy.

[97] U. Shardanand and Pattie Maes. Social Information Filtering: Algorithms for

Automating ‘Word of Mouth’. In Proceedings of the CHI-95 Conference, Denver,

CO, May 1995.

[98] Mark A. Sheldon, Andrzej Duda, Ron Weiss, and David K. Gifford. Discover:

A Resource Discovery System based on Content Routing. In Proceedings of the

3rd World Wide Web Conference, Elsevier, North Holland, April 1995.

http://www-psrg.lcs.mit.edu/ftpdir/papers/www95.ps.

[99] Narayanan Shivakumar and Hector Garcia-Molina. Finding near-replicas of doc-

uments on the web. In Proceedings of Workshop on Web Databases (WebDB’98),

187

March 1998.

http://www-db.stanford.edu/~shiva/Pubs/web.ps.

[100] Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael Moricz.

Analysis of a Very Large AltaVista Query Log. Technical Report 1998-014,

Compaq Systems Research Center, Palo Alto, CA, October 1998.

http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/-

src-tn-1998-014.html.

[101] K. Sparck Jones and C. J. van Rijsbergen. Report on the need for and provision

of an “ideal” information retrieval test collection. Technical Report 5266, British

Library Research and Development Report, Computer Laboratory, University

of Cambridge, 1979.

[102] Amanda Spink. Term Relevance Feedback and Query Expansion: Relation

to Design. In Proceedings of the 1994 ACM SIGIR Conference, pages 81–90,

Dublin, Ireland, July 1994. ACM Press.

[103] Louise T. Su. The relevance of recall and precision in user evaluation. J.

American Society of Information Science, 45(3):207–217, 1994.

[104] Atsushi Sugiura, 1999. Personal Communication.

[105] Danny Sullivan. Search Engine Watch, 1999.

http://www.searchenginewatch.com.

[106] The Daily of the University of Washington. The Online Daily of the University

of Washington, 1997.

http://www.thedaily.washington.edu.

188

[107] The Intelligent Transportation Systems Program. netAddress Book of Trans-

portation Professionals, 1996.

http://dragon.princeton.edu/~dhb/TRANSPORT NAB/.

[108] C. J. van Rijsbergen. Information Retrieval. Butterworths, second edition,

1979.

[109] Ellen Voorhees and Donna Harman, editors. Information Technology: The Fifth

Text REtrieval Conference, Gathersburg, MD, nov 1996. NIST Special Publi-

cation 500-238.

http://trec.nist.gov.

[110] Ellen Voorhees and Donna Harman. Overview of the Sixth Text REtrieval

Conference (TREC-6). In Ellen Voorhees and Donna Harman, editors, TREC-6,

Proceedings of the Second Text REtrieval Conference. NIST Special Publication

500-240, 1997.

[111] Yahoo Inc. Yahoo! reports fourth quarter and 1998 fiscal year end financial

results. Press Release, January 1999.

http://www.yahoo.com/docs/pr/release259.html.

[112] O. Zamir and O. Etzioni. A dynamic clustering interface to web search results.

In Proceedings of the Eighth Int. WWW Conference, 1999.

189

Appendix A

QUERIES FROM LAWRENCE AND GILES STUDY

1. adaptive access control

2. neighborhood preservation topographic

3. hamiltonian structures

4. right linear grammar

5. pulse width modulation neural

6. unbalanced prior probabilities

7. ranked assignment method

8. internet explorer favourites importing

9. karvel thornber

10. zili liu

11. softmax activation function

12. bose multidimensional system theory

13. gamma mlp

14. dvi2pdf

190

15. john oliensis

16. rieke spikes exploring neural

17. video watermarking

18. counterpropagation network

19. fat shattering dimension

20. abelson amorphous computing

21. histogram equalization algorithm

22. mixture distance

23. selective attention memory task sequential

24. universal approximation bounds

25. bayesian interpolation

191

Appendix B

CIE USER SURVEY FORM

HuskySearch CIE Evaluation

Handed out: Tues., Jan. 13th

Due back: Tues., Jan. 20th

In this study, you’ll evaluate HuskySearch, an online search tool by Erik Selberg and Oren

Etzioni in the CSE department here at UW. You will be evaluating one of two interfaces to

the most recent version of HuskySearch. This evaluation is part of ongoing research with

HuskySearch; the goal for this evaluation is to determine how well certain new features are

providing the intended functionality.

You will attempt to find answers to five (5) different questions using HuskySearch. You are

free to search through whatever Web pages you find on the web, but please do not use other

search services you may know of nor use any written material, such as encyclopedias or

fact books, even to start your query. Depending on your search strategies, some questions

may take longer to answer than others, but you shouldn’t feel required to spend more than

10 minutes or so on any one question. In addition, you will write a short journal, which

describes your expectations and evaluations of the searching. You will also fill out brief

questionnaires before and after you answer all 6 questions.

As you attempt to answer each question, please write down the Start Time, and when

you find the answer or give up, the End Time. Please record the times in Hour:Minute

format (e.g. 8:34 PM), and try to be as close to the actual minute as you can. We will be

attempting to determine how long on average it takes for people to answer each question,

so these numbers are critical!

For each query you search with HuskySearch, please write down the terms you used, and

192

circle what you selected in the Search for field (The Phrase, All of These Words, etc.) and

the type of search you used (Fast, Default, Quality). (If you just hit the return key after

entering your search terms, circle Default.) When you then get the results, please try to

briefly write down what you are thinking as you look at the results. Also, if the answer

isn’t apparent from the results listed, please jot down a reason why you think this may be

if one is apparent.

When you find the answer, please jot it down in the space provided, mark down the End

Time, and circle the proper value for “Correctness of your answer” and “Evaluation of

HuskySearch performance.”

Please contact Erik Selberg via e-mail at selberg@cs.washington.edu if you have any

questions or issues.

Thank you for taking the time to complete this evaluation. Your effort and insight into

the current operation of HuskySearch will be used to further enhance its ability to provide

quality information retrieval on the World Wide Web.

Sincerely,

Erik Selberg and Oren Etzioni

193

Group 1 Beginning Questionnaire

1. How would you characterize your familiarity with searching the World Wide Web?

None Passing Familiar Experienced

2. How frequently do you search the World Wide Web?

Never Occasionally Daily

3. If you have searched the World Wide Web, how advanced is your use of search syntax?

Don’t use advanced syntax Occasionally use it Routinely use it

4. Have you ever used HuskySearch or before?

Never Occasionally Daily

5. Please list the Web search services (also called search engines) you use frequently:

You are now ready to begin the evaluation.

Please connect your Web browser to:

http://huskysearch.cs.washington.edu/eval/group1/tutorial.html

and take a brief tutorial. Once that is finished, please connect your Web browser to:

http://huskysearch.cs.washington.edu/eval/group1/index.html

and begin the evaluation. Please use the above link to HuskySearch for all your

work during this evaluation; of note, make sure that “Group 1 Interface” is present

on the HTML page. If you accidentally get to the standard HuskySearch page (at

http://huskysearch.cs.washington.edu/) or a similar page, please open the above page di-

rectly.

194

Group 2 Beginning Questionnaire

1. How would you characterize your familiarity with searching the World Wide Web?

None Passing Familiar Experienced

2. How frequently do you search the World Wide Web?

Never Occasionally Daily

3. If you have searched the World Wide Web, how advanced is your use of search syntax?

Don’t use advanced syntax Occasionally use it Routinely use it

4. Have you ever used HuskySearch or before?

Never Occasionally Daily

5. Please list the Web search services (also called search engines) you use frequently:

You are now ready to begin the evaluation.

Please connect your Web browser to:

http://huskysearch.cs.washington.edu/eval/group2/tutorial.html

and take a brief tutorial. Once that is finished, please connect your Web browser to:

http://huskysearch.cs.washington.edu/eval/group2/index.html

and begin the evaluation. Please use the above link to HuskySearch for all your

work during this evaluation; of note, make sure that “Group 2 Interface” is present

on the HTML page. If you accidentally get to the standard HuskySearch page (at

http://huskysearch.cs.washington.edu/) or a similar page, please open the above page di-

rectly.

195

Question: Who were the members of the A-Team from the TV show by the same name?

Start Time (HH:MM): End Time:

Answer:

Correctness of your answer: (circle one) Very sure Pretty sure Not sure Didn’t finish

Evaluation of HuskySearch performance: Excellent Very Good OK Poor

1st Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

2nd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

3rd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

196

Question 1: What are the three most recent roles Kevin Spacey has played? Please give role,

movie, and date.

Start Time (HH:MM): End Time:

Answer:

Correctness of your answer: (circle one) Very sure Pretty sure Not sure Didn’t finish

Evaluation of HuskySearch performance: Excellent Very Good OK Poor

1st Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

2nd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

3rd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

197

Question 2: Which Utah ski resort has the highest elevation, and what is it?

Start Time (HH:MM): End Time:

Answer:

Correctness of your answer: (circle one) Very sure Pretty sure Not sure Didn’t finish

Evaluation of HuskySearch performance: Excellent Very Good OK Poor

1st Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

2nd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

3rd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

198

Question 3: Find a picture of a Fraser fir. This must be an actual detailed picture or photograph

of a Fraser fir. Pictures of a generic tree or of a fir in the background setting don’t count.

Start Time (HH:MM): End Time:

Answer:

Correctness of your answer: (circle one) Very sure Pretty sure Not sure Didn’t finish

Evaluation of HuskySearch performance: Excellent Very Good OK Poor

1st Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

2nd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

3rd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

199

Question 4: How many members are there in the Canadian parliament?

Start Time (HH:MM): End Time:

Answer:

Correctness of your answer: (circle one) Very sure Pretty sure Not sure Didn’t finish

Evaluation of HuskySearch performance: Excellent Very Good OK Poor

1st Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

2nd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

3rd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

200

Question 5: What was Microsoft’s IPO price? (The price they went public at, not their current

stock value).

Start Time (HH:MM): End Time:

Answer:

Correctness of your answer: (circle one) Very sure Pretty sure Not sure Didn’t finish

Evaluation of HuskySearch performance: Excellent Very Good OK Poor

1st Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

2nd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

3rd Query Term(s):

Searched for: Phrase All of these words Any of these words Person Pages pointing to

Type of search: Fast Default Quality

Specific comments:

If you didn’t get your answer from this search, why do you think you didn’t?

201

Ending Questionnaire

Thank you for taking the time to complete this study! Results should be published by the

end of January. Please fill out this final ending questionnaire with your overall evaluation of

the system through all six questions. Feel free to also write down any comment or suggestion

at the bottom of this page.

Thanks again, Erik Selberg and Oren Etzioni

1. What features of the search engine helped you find your answer?

2. What features inhibited your searching?

3. HuskySearch tends to return a lot of extraneous results for each search. How did the

extraneous results affect your searching?

Extraneous results not a problem

Annoying, but manageable

Difficult to find relevant page

4. Comments on HuskySearch performance and interface:

202

VITA

Erik W. Selberg, Ph. D.

4815 36th Ave. NE

Seattle, WA. 98105

h: (206) 517-3039 c: (206) 915-1472

erik@selberg.org

http://www.selberg.org

Executive Summary

With over fourteen years experience in the computer industry, Dr. Selberg has a

proven track record in developing and operating large-scale Internet search systems,

integrated Internet applications, and hosted services. He created the MetaCrawler

search service, now part of InfoSpace and still one of the top meta-search services

available. He is currently overseeing the development and operations of the Con-

tent Discovery Systems Group at RealNetworks, where he is responsible for the

Authentication Services and Content Management Services. Dr. Selberg is well

published and holds two patents. He is focused on the business of technology, cre-

ating profitable technology products and services that have a profound impact on

a large number of people.

203

Technical Interests

Information retrieval, collaborative systems, large scale systems, retrieval and scal-

ability issues of the World Wide Web, security and cryptography, audio and video

systems.

Professional Experience

RealNetworks, Inc. Seattle, WA Aug. 2001 – present

As the Development Manager for the Content Discovery Systems Group of Real-

Networks, Dr. Selberg oversees the development, maintenance, and operations of

nearly a dozen system platforms for the RealOne Subscription Platform. One of

his primary responsibilities is ensuring the proper development and operation of

the RealOne Authentication Services, mission-critical components of the RealOne

service that ensure subscribers are able to access content they are entitled to and

that non-subscribers are denied and presented with the appropriate upsell or error.

He also manages the RealOne Content Management Services, which includes the

RealOne Search Service. These services enable various vendors and internal editors

to provide content for the various RealOne subscriptions as well as enable various

front-end teams in the company, as well as external localization groups, to provide

customers with the ability to discover and play various pieces of content. Two

of the primary systems under his direct supervision is the Radio Service, which

powers the various Radio offerings of RealOne, and the Album Information Ser-

vice, which is automatically used by every user of RealOne to provide information

to that user about the media they are playing. These two services are the most

commonly used services of people using the RealOne Player.

Startup Consultant Intermittent

As a startup consultant, Dr. Selberg aided various startup companies with early

204

stage business and technical development. He helped draft and edit business plans

and patent applications. He also aided the development of initial prototypes and

demos. He was also instrumental in facilitating initial and secondary meetings with

local VCs and angel funds, such as Madrona Venture Capital and Arch Venture

Partners.

His first engagement was with Netbot Inc., a Seattle-based startup, that licensed

MetaCrawler from his research group at the University of Washington. Over the

summer of 1996, he worked with Netbot to transfer the MetaCrawler technology

and initiate the groundwork for Netbot to host a commercial MetaCrawler service,

which would be able to handle upwards of 10 million queries per day at launch. In

addition, he was responsible for initial negotiations with the Web search services

for commercial use of MetaCrawler with their services, and was heavily involved

with the conception of the business plan for the commercial MetaCrawler service.

Shortly after he completed his work at Netbot, it was acquired by Excite Inc. for

$35 million dollars for its Jango software product, a comparison shopping agent

that used the MetaCrawler engine. Excite was later acquired by Home, Inc. in

spring of 1999 for $7 billion dollars.

FizzyLab, Inc. Seattle, WA July, 2000 – Jan., 2001

FizzyLab was a hosted services company that employed query-by-example search

technology in order to provide quality distribution and merchandising of online

content and products. Its primary product, Content Relevator, provided a ”More

articles like this” for several online media providers, such as BusinessWeek and

People, and its newest product, Commerce Relevator, provided a ”Products like

this article” service, initially for Time magazine. FizzyLab ran on a Java / Solaris

/ Oracle platform.

As the Director of Technology for FizzyLab, he led a team of 20 people responsible

205

for the design, implementation, and maintenance of the four primary FizzyLab

services and various infrastructure components. He was also responsible for both

strategic planning as well as tactical implementation of the technology group for the

company. He was involved with forming company strategy as it pertains to both

existing and developing technologies, assessing the technical challenges of various

market opportunities, evaluating third party technology, and evaluating business

opportunities that arise from FizzyLab’s Advanced Technology Group. With the

other company Directors, he created a company-wide tactical road maps on a

quarterly basis. He then executed against the company road map, ensuring that

initiatives were properly scoped and staffed, teams were engaged, and engineering

work was properly scheduled. His managerial responsibilities included creating

project and technology teams, giving direction to team leads and members, hiring

and firing, setting individual goals, and developing and executing development

processes.

Go2Net, Inc., Seattle, WA June, 1999 – June, 2000

Go2Net was a diversified Internet company with products in four main areas: Web

search, small business hosting, financial message boards, and online games, with

emerging initiatives in broadband properties. The Search group was responsible

for the development, maintenance, and operations of MetaCrawler, DogPile, and

100hot. In July of 2000, both MetaCrawler and DogPile were each handling over

2 million queries per day on about 20 lower-end Linux boxes.

As the Director of Search for Go2Net, he lead a team of 9 people who managed

the daily operation and enhancement of MetaCrawler, DogPile, and 100hot, which

were responsible for generating several million dollars of revenue per quarter. He

helped form the product strategies, created the schedule, and assessed third-party

technologies for acquisition or partnerships. On the technology side, he created

and implemented the development, build, and release processes, developed the

206

high level architectures of the system, scheduled resources, and oversaw the hiring

of the engineering team.

University of Washington, Seattle, WA September, 1993 – June,

1999

While attaining his doctorate degree at the UW, Dr. Selberg’s most lauded achieve-

ment was the creation of MetaCrawler with his advisor, Prof. Oren Etzioni. He

implemented MetaCrawler, one of the first World Wide Web meta search services,

and administered MetaCrawler as a Web service for over a year. He was responsi-

ble for ensuring the MetaCrawler remained fast and responsive as the number of

users grew, given limited hardware resources. He developed many software opti-

mizations and automated server administration tools towards this effort. Before

MetaCrawler was licensed in 1996, it was handling almost 100,000 queries per day

with room to grow, which was roughly 3-5 times as many as its closest competitor,

SavvySearch.

While investigating the overlap of search service results, he observed that exper-

iments that used search results as data were very unstable. This led to his work

on empirical evaluation of major search services. This evaluation measured how

rapidly the results of a query change over time, as well as how different the results

of a query are when the query is submitted with different query options. These

findings concluded that the results of Web search services change extremely rapidly,

even when given the same query.

AT&T Bell Laboratories, Murray Hill, NJ Summer, 1994

At AT&T Bell Laboratories, Dr. Selberg worked with Bart Selman and Henry

Kautz on the Bots project. The Bots project was an exploration into creating

personal assistant software agents that would communicate with one another to

accomplish various tasks, such as meeting scheduling, expertise referral, and e-mail

207

prioritizing. His tasks were to re-write the Bots in a more manageable way as well

as to create a Bot communications protocol so that Bots could effectively transfer

information between themselves.

Pittsburgh Science Center, Pittsburgh, PA Summer, 1993

Research intern at the Pittsburgh Science Center, working with Prof. Adam Be-

guelin on the Parallel Virtual Machine (PVM) project, which simulated a dis-

tributed memory multiprocesser by using a network of workstations. Designed a

monitoring and debugging tool for applications using PVM as well as designed and

integrated a Kerberos-based authentication system for PVM applications.

Education

Ph.D., Computer Science and Engineering June, 1999

University of Washington, Seattle, WA.

M.S., Computer Science and Engineering June, 1995

University of Washington, Seattle, WA.

B.S., Mathematics / Computer Science and Logic & Computation May, 1993

Carnegie Mellon University, Pittsburgh, PA.

Technical Qualifications

Dr. Selberg has very broad experience with most current technologies, and a

demonstrated ability to learn new technologies very quickly. Following summarizes

some of his key strengths:

208

Languages: Java (J2EE), SQL, C/C++, Perl, UNIX scripting

Web technologies: DHTML, JavaScript, XML / XSLT, JSP

Databases: Oracle, MySQL, SQL Server, Berkeley DB

Operating Systems: UNIX (esp. Linux & Solaris), Mac, Windows, Palm

Awards

The C|Net Awards for Internet Excellence, 1995

MetaCrawler was one of three finalists for the Best Internet Search Engine.

Allen Newell Award for Excellence in Undergraduate Research, 1993

Teaching Experience

University of Washington, Seattle, WA Winter – Spring, 1994

Teaching Assistant for Professors John Zahorjan (Winter Quarter) and Steve Hanks

(Spring Quarter) for UW CSE undergraduate second-quarter introduction to com-

puter science course. This course is taken by roughly 400 students per quarter,

and gives undergraduates a further understanding of more advanced introductory

topics, such as object oriented programming, searching and sorting, pointers, etc.

With John Zahorjan and 3 other TAs, we migrated the course from using Ada on

UNIX systems to C++ on Windows, Mac, and UNIX systems.

Publications

Thesis

“Towards Comprehensive Web Search.” Erik Selberg. Ph. D. Thesis, University

of Washington, June, 1999.

Fully Refereed Papers

209

“On the Instability of Web Search.” Erik Selberg and Oren Etzioni. In RIAO ’00:

Content-based Multimedia Access, Apr., 1999.

“Multi-Service Search and Comparison using the MetaCrawler.” Erik Selberg and

Oren Etzioni. In Proceedings of the 4th International World Wide Web Conference,

Dec., 1995.

“TRON: Process-Specific File Protection for the UNIX Operating System.” An-

drew Berman, Virgil Bourassa, and Erik Selberg. In Proceedings of the 1995 Winter

USENIX Conference, Jan., 1995.

210

Invited Papers

“The MetaCrawler Architecture for Resource Aggregation on the Web.” IEEE

Expert, Jan. / Feb. 1997, 12(1).

Technical Reports

“Experiments with Collaborative Index Enhancement.” Erik Selberg and Oren

Etzioni. University of Washington Tech Report UW-CSE-98-06-01, June 1998.

“How to Stop a Cheater: Secret Sharing with Dishonest Participants.” Erik Sel-

berg. Carnegie Mellon University Tech Report CMU-CS-93-182, June 1993.

Patents

Dr. Selberg holds two patents covering a method and system wrappers to execute

a query on a network:

6,102,969 Method and system using information written in a

wrapper description language to execute query on a network

6,085,186 Method and system using information written in a

wrapper description language to execute query on a network

Senior Thesis Advising

As part of the undergraduate honors program, Undergraduate seniors complete a

senior project where they work closely with graduate students and professors.

Christin Boyd Winter and Spring 1996

Design and implementation of a query refinement system for HuskySearch. This

system attempted to aid the user in improving a given query as well as provide us

211

with failure data on poor queries.

Darren Schack Summer 1996

Design and implementation of a distributed document caching mechanism for

HuskySearch. This system would cache documents downloaded from the Web

on demand to benefit repeated or similar queries.

Tim Bradley Fall 1995 and Winter 1996

Design and implementation of a system to facilitate MetaCrawler log mining. This

data would allow us to discern patterns in what clients were looking for, what they

received, and what they subsequently followed.

Invited Talks

Decade of the Web Symposium, University of Iowa March, 1999

Presentation on the current state of meta search technology and the World Wide

Web, including details on MetaCrawler, HuskySearch, and other Web-related IR

projects at the University of Washington.

IBM T.J. Watson Research Center Oct. 1998

Boeing Corp. May 1998

Presentations on MetaCrawler and HuskySearch, describing both the technical

innovations and practical applications for both Internet and Intranet use.

Data Mining Summit Mar. 1997

Presentation on meta search technology for data mining professionals, with em-

212

phasis on practical applications of current research.

Distributed Indexing and Searching Workshop May 1996

IETF Group Meeting June 1996

Presentation on MetaCrawler technology emphasizing practical and economic im-

plication of meta search services for leading academics and industry professionals.

During the workshop a proposal was reached for scaling meta search services via

query routing, which was then presented at the FIND group of the IETF.

Software

HuskySearch. HuskySearch is a second generation meta search service avail-

able at the University of Washington. HuskySearch is the primary search

service available for searching the University of Washington and is an ongo-

ing research testbed for World Wide Web IR. HuskySearch is available at

http://huskysearch.cs.washington.edu.

MetaCrawler. MetaCrawler is one of the original World Wide Web meta search

services. Its early popularity was instrumental in the formation of Netbot, Inc., a

startup company founded at the University of Washington and acquired by Excite,

Inc. for $35 million. MetaCrawler has since been licensed to Go2Net Inc., a

Seattle start-up, and is one of the premiere sites on the Go2Net Network. The

Go2Net Network was ranked #25 by Media Metrics in terms of overall web traffic

in January 1999. MetaCrawler is available at http://www.metacrawler.com.

Department and University Activities

Graduate Student Orientation Committee, 1994–1995: Supervised orientation pre-

sentation for new graduate students in the CSE Department.

213

References

Tom Haug tom.haug@pacificedge.com

Pacific Edge Software, Inc.

Steve Newman steve.newman@infospace.com

InfoSpace, Inc.

Chek Lim chek.lim@infospace.com

InfoSpace, Inc.

Professor Oren Etzioni etzioni@cs.washington.edu

Department of Computer Science and Engineering, University of Washington

Professor Ed Lazowska lazowska@cs.washington.edu

Department of Computer Science and Engineering, University of Washington

Professor Efthimis Efthimiadis efthimis@u.washington.edu

Information School, University of Washington

Advice

If you have tickets to Blondie for the night before your 9 A.M. defense and are

wondering whether or not you should go, you should go.

